1
|
Hermans W, Gemoets L, De Bondt Y, Courtin CM. Selection of Wheat Miller's Bran Based on the Sub-aleurone Protein Content Allows Increase of the Quality of Bran-Enriched Bread. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23448-23457. [PMID: 39401388 DOI: 10.1021/acs.jafc.4c06550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Wheat miller's bran negatively affects the gluten network but contains the grain tissue with the highest gluten content, the sub-aleurone. Here, the aim was to investigate how sub-aleurone gluten proteins in miller's bran affect bran-enriched bread quality. A bread-making experiment was performed with six lab-scale-produced bran samples. These strongly differed in protein content (10.8-18.6%) but had a similar particle size (d50: 1266-1330 μm) and strong water retention capacity (0.71-0.80 mL of H2O/g). Bran protein content variation mainly originated from sub-aleurone protein content variation (10.7-26.2%). Incorporating the bran with the highest versus lowest sub-aleurone protein content increased the loaf volume by 22.4%. 99% of loaf volume variation could be explained by sub-aleurone protein content variation. Conclusively, sub-aleurone protein content is the most important factor regarding bran functionality in bread-making. This was strengthened using commercial bran. Therefore, bran selection based on (sub-aleurone) protein content could be a low-cost, low-effort opportunity for bran-enriched bread-making.
Collapse
Affiliation(s)
- Wisse Hermans
- Department of Microbial and Molecular Systems (M2S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, Leuven B-3001, Belgium
| | - Lily Gemoets
- Department of Microbial and Molecular Systems (M2S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, Leuven B-3001, Belgium
| | - Yamina De Bondt
- Department of Microbial and Molecular Systems (M2S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, Leuven B-3001, Belgium
| | - Christophe M Courtin
- Department of Microbial and Molecular Systems (M2S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, Leuven B-3001, Belgium
| |
Collapse
|
2
|
Janssen F, Courtin CM, Wouters AGB. Aqueous phase extractable protein of wheat bran and germ for the production of liquid and semi-solid foods. Crit Rev Food Sci Nutr 2024; 64:9585-9603. [PMID: 37203963 DOI: 10.1080/10408398.2023.2214615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To achieve a more sustainable global food production, a shift from animal to plant protein based food is necessary. At the same time, these plant proteins are preferentially derived from side-streams of industrial processes. Wheat bran and germ represent two major side-streams of the wheat milling industry, and contain aqueous-phase soluble proteins with a well-balanced amino acid composition. To successfully use wheat bran and germ proteins in novel plant-based liquid and semi-solid foods, they need to (i) be rendered extractable and (ii) contribute functionally to stabilizing the food system. Prior heat treatment and the occurrence of intact cell walls are important barriers in this regard. Several strategies have been applied to overcome these issues, including physical processing and (bio)chemical modification. We here present a comprehensive, critical overview of the aqueous-phase extraction of protein from (modified) wheat bran and germ. Moreover, we discuss the functionality of the extracted protein, specifically in the context of liquid (foam- and emulsion-type) and semi-solid (gel-type) food applications. In each section, we identify important knowledge gaps and highlight several future prospects that could further increase the application potential of wheat bran and germ proteins in the food industry.
Collapse
Affiliation(s)
- Frederik Janssen
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Zhang S, Ghatak A, Mohammadi Bazargani M, Kramml H, Zang F, Gao S, Ramšak Ž, Gruden K, Varshney RK, Jiang D, Chaturvedi P, Weckwerth W. Cell-type proteomic and metabolomic resolution of early and late grain filling stages of wheat endosperm. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:555-571. [PMID: 38050335 DOI: 10.1111/pbi.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/21/2023] [Accepted: 10/03/2023] [Indexed: 12/06/2023]
Abstract
The nutritional value of wheat grains, particularly their protein and metabolite composition, is a result of the grain-filling process, especially in the endosperm. Here, we employ laser microdissection (LMD) combined with shotgun proteomics and metabolomics to generate a cell type-specific proteome and metabolome inventory of developing wheat endosperm at the early (15 DAA) and late (26 DAA) grain-filling stages. We identified 1803 proteins and 41 metabolites from four different cell types (aleurone (AL), sub-aleurone (SA), starchy endosperm (SE) and endosperm transfer cells (ETCs). Differentially expressed proteins were detected, 67 in the AL, 31 in the SA, 27 in the SE and 50 in the ETCs between these two-time points. Cell-type accumulation of specific SUT and GLUT transporters, sucrose converting and starch biosynthesis enzymes correlate well with the respective sugar metabolites, suggesting sugar upload and starch accumulation via nucellar projection and ETC at 15 DAA in contrast to the later stage at 26 DAA. Changes in various protein levels between AL, SA and ETC support this metabolic switch from 15 to 26 DAA. The distinct spatial and temporal abundances of proteins and metabolites revealed a contrasting activity of nitrogen assimilation pathways, e.g. for GOGAT, GDH and glutamic acid, in the different cell types from 15 to 26 DAA, which can be correlated with specific protein accumulation in the endosperm. The integration of cell-type specific proteome and metabolome data revealed a complex metabolic interplay of the different cell types and a functional switch during grain development and grain-filling processes.
Collapse
Affiliation(s)
- Shuang Zhang
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Ecophysiology, Ministry of Agriculture/Nanjing Agricultural University, Nanjing, China
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | | | - Hannes Kramml
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Fujuan Zang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Ecophysiology, Ministry of Agriculture/Nanjing Agricultural University, Nanjing, China
| | - Shuang Gao
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Ecophysiology, Ministry of Agriculture/Nanjing Agricultural University, Nanjing, China
| | - Živa Ramšak
- Department of Systems Biology and Biotechnology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Systems Biology and Biotechnology, National Institute of Biology, Ljubljana, Slovenia
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Ecophysiology, Ministry of Agriculture/Nanjing Agricultural University, Nanjing, China
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Hermans W, Busschaert J, De Bondt Y, Langenaeken NA, Courtin CM. The Wheat Starchy Endosperm Protein Gradient as a Function of Cultivar and N-fertilization Is Reflected in Mill Stream Protein Content and Composition. Foods 2023; 12:4192. [PMID: 38231659 DOI: 10.3390/foods12234192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024] Open
Abstract
Within the wheat starchy endosperm, the protein content increases biexponentially from the inner to outer endosperm. Here, we studied how this protein gradient is reflected in mill fractions using three cultivars (Claire, Apache, and Akteur) grown without and with N-fertilization (300 kg N ha-1). The increasing protein content in successive break fractions was shown to reflect the protein gradient within the starchy endosperm. The increasing protein content in successive reduction fractions was primarily due to more aleurone contamination and protein-rich material being harder to reduce in particle size. The miller's bran fractions had the highest protein content because of their high sub-aleurone and aleurone content. Additionally, the break fractions were used to deepen our understanding of the protein composition gradient. The gradient in relative gluten content, increasing from inner to outer endosperm, was more pronounced without N-fertilization than with and reached levels up to 87.3%. Regarding the gluten composition gradient, no consistent trends were observed over cultivars when N-fertilization was applied. This could, at least partly, explain why there is no consensus on the gluten composition gradient in the literature. This study aids millers in managing fluctuations in the functionality of specific flour streams, producing specialized flours, and coping with lower-quality wheat.
Collapse
Affiliation(s)
- Wisse Hermans
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Justine Busschaert
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Yamina De Bondt
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Niels A Langenaeken
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| |
Collapse
|
5
|
Saini P, Islam M, Das R, Shekhar S, Sinha ASK, Prasad K. Wheat Bran as Potential Source of Dietary Fiber: Prospects and Challenges. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
He HJ, Qiao J, Liu Y, Guo Q, Ou X, Wang X. Isolation, Structural, Functional, and Bioactive Properties of Cereal Arabinoxylan─A Critical Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15437-15457. [PMID: 34842436 DOI: 10.1021/acs.jafc.1c04506] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Arabinoxylans (AXs) are widely distributed in various cereal grains, such as wheat, corn, rye, barley, rice, and oat. The AX molecule contains a linear (1,4)-β-D-xylp backbone substituted by α-L-araf units and occasionally t-xylp and t-glcpA through α-(1,2) and/or α-(1,3) glycosidic linkages. Arabinoxylan shows diversified functional and bioactive properties, influenced by their molecular mass, branching degree, ferulic acid (FA) content, and the substitution position and chain length of the side chains. This Review summarizes the extraction methods for various cereal sources, compares their structural features and functional/bioactive properties, and highlights the established structure-function/bioactivity relationships, intending to explore the potential functions of AXs and their industrial applications.
Collapse
Affiliation(s)
- Hong-Ju He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jinli Qiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xingqi Ou
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaochan Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
7
|
Hermans W, Mutlu S, Michalski A, Langenaeken NA, Courtin CM. The Contribution of Sub-Aleurone Cells to Wheat Endosperm Protein Content and Gradient Is Dependent on Cultivar and N-Fertilization Level. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6444-6454. [PMID: 34100602 DOI: 10.1021/acs.jafc.1c01279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The proteins in the starchy endosperm of wheat determine wheat quality and exhibit a quantitative gradient decreasing from the outer to inner endosperm. Here, we investigate how protein-rich sub-aleurone cells contribute to the protein content and gradient by studying three cultivars, each cultivated at three levels of nitrogen (N)-fertilization. The observed increased protein content with increased N-fertilization was cultivar-dependent. Image analysis showed that the underlying protein gradient could be described by a declining biexponential curve, with protein contents up to 32.0% in the sub-aleurone. Cultivars did not differ in protein content in the center of the cheeks and only differed in the outer endosperm when N-fertilization is applied. N-Fertilization resulted in relatively higher increases in protein content in the outer compared to inner endosperm. Hence, sub-aleurone cells could affect the classification of cultivars by baking quality. Cultivar selection and N-fertilization could furthermore be promising techniques to produce protein-rich miller's bran.
Collapse
Affiliation(s)
- Wisse Hermans
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Selime Mutlu
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Adam Michalski
- Institute of Geodesy and Geoinformatics, Wrocław University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wrocław, Poland
| | - Niels A Langenaeken
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
8
|
Cheng W, Sun Y, Fan M, Li Y, Wang L, Qian H. Wheat bran, as the resource of dietary fiber: a review. Crit Rev Food Sci Nutr 2021; 62:7269-7281. [PMID: 33938774 DOI: 10.1080/10408398.2021.1913399] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Wheat bran is a major by-product of white flour milling and had been produced in large quantities around the world; it is rich in dietary fiber and had already been used in many products such as whole grain baking or high dietary fiber addition. It has been confirmed that a sufficient intake of dietary fiber in wheat bran with appropriate physiological functions is beneficial to human health. Wheat bran had been considered as the addition with a large potential for improving the nutritional condition of the human body based on the dietary fiber supplement. The present review summarized the available information on wheat bran related to its dietary fiber functions, which may be helpful for further development of wheat bran as dietary fiber resource.
Collapse
Affiliation(s)
- Wen Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Taglieri I, Macaluso M, Bianchi A, Sanmartin C, Quartacci MF, Zinnai A, Venturi F. Overcoming bread quality decay concerns: main issues for bread shelf life as a function of biological leavening agents and different extra ingredients used in formulation. A review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1732-1743. [PMID: 32914410 DOI: 10.1002/jsfa.10816] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
As is widely accepted, the quality decay of freshly baked bread that affects product shelf life is the result of a complex multifactorial process that involves physical staling, together with microbiological, chemical and sensorial spoilage. In this context, this paper provides a critical review of the recent literature about the main factors affecting shelf life of bread during post-baking. An overview of the recent findings about the mechanism of bread staling is firstly provided. Afterwards, the effect on staling induced by baker's yeasts and sourdough as well as by the extra ingredients commonly utilized for bread fortification is also addressed and discussed. As inclusion/exclusion criteria, only papers dealing with wheat bread and not with long-life bread or gluten-free bakery products are taken into consideration. Despite recent developments in international scientific literature, the whole mechanism that induces bread staling is far from being completely understood and the best analytical methods to be adopted to measure and/or describe in depth this process appear still debated. In this topic, the effects induced on bread shelf life by the use of biological leavening agents (baker's yeasts and sourdough) as well as by some extra ingredients included in the bread recipe have been individuated as two key issues to be addressed and discussed in terms of their influence on the kinetics of bread staling. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Mike Frank Quartacci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Langenaeken NA, Ieven P, Hedlund EG, Kyomugasho C, van de Walle D, Dewettinck K, Van Loey AM, Roeffaers MBJ, Courtin CM. Arabinoxylan, β-glucan and pectin in barley and malt endosperm cell walls: a microstructure study using CLSM and cryo-SEM. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1477-1489. [PMID: 32412127 DOI: 10.1111/tpj.14816] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 05/14/2023]
Abstract
The architecture of endosperm cell walls in Hordeum vulgare (barley) differs remarkably from that of other grass species and is affected by germination or malting. Here, the cell wall microstructure is investigated using (bio)chemical analyses, cryogenic scanning electron microscopy (cryo-SEM) and confocal laser scanning microscopy (CLSM) as the main techniques. The relative proportions of β-glucan, arabinoxylan and pectin in cell walls were 61, 34 and 5%, respectively. The average thickness of a single endosperm cell wall was 0.30 µm, as estimated by the cryo-SEM analysis of barley seeds, which was reduced to 0.16 µm after malting. After fluorescent staining, 3D confocal multiphoton microscopy (multiphoton CLSM) imaging revealed the complex cell wall architecture. The endosperm cell wall is composed of a structure in which arabinoxylan and pectin are colocalized on the outside, with β-glucan depositions on the inside. During germination, arabinoxylan and β-glucan are hydrolysed, but unlike β-glucan, arabinoxylan remains present in defined cell walls in malt. Integrating the results, an enhanced model for the endosperm cell walls in barley is proposed.
Collapse
Affiliation(s)
- Niels A Langenaeken
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, Leuven, 3001, Belgium
| | - Pieter Ieven
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, Leuven, 3001, Belgium
| | - Erik G Hedlund
- Centre for Surface Chemistry and Catalysis, KU Leuven, Leuven, 3001, Belgium
| | - Clare Kyomugasho
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 22, Heverlee, 3001, Belgium
| | - Davy van de Walle
- Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Koen Dewettinck
- Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Ann M Van Loey
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 22, Heverlee, 3001, Belgium
| | | | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, Leuven, 3001, Belgium
| |
Collapse
|
11
|
Navrotskyi S, Belamkar V, Baenziger PS, Rose DJ. Insights into the Genetic Architecture of Bran Friability and Water Retention Capacity, Two Important Traits for Whole Grain End-Use Quality in Winter Wheat. Genes (Basel) 2020; 11:E838. [PMID: 32717821 PMCID: PMC7466047 DOI: 10.3390/genes11080838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
Bran friability (particle size distribution after milling) and water retention capacity (WRC) impact wheat bran functionality in whole grain milling and baking applications. The goal of this study was to identify genomic regions and underlying genes that may be responsible for these traits. The Hard Winter Wheat Association Mapping Panel, which comprised 299 lines from breeding programs in the Great Plains region of the US, was used in a genome-wide association study. Bran friability ranged from 34.5% to 65.9% (median, 51.1%) and WRC ranged from 159% to 458% (median, 331%). Two single-nucleotide polymorphisms (SNPs) on chromosome 5D were significantly associated with bran friability, accounting for 11-12% of the phenotypic variation. One of these SNPs was located within the Puroindoline-b gene, which is known for influencing endosperm texture. Two SNPs on chromosome 4A were tentatively associated with WRC, accounting for 4.6% and 4.4% of phenotypic variation. The favorable alleles at the SNP sites were present in only 15% (friability) and 34% (WRC) of lines, indicating a need to develop new germplasm for these whole-grain end-use quality traits. Validation of these findings in independent populations will be useful for breeding winter wheat cultivars with improved functionality for whole grain food applications.
Collapse
Affiliation(s)
- Sviatoslav Navrotskyi
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Vikas Belamkar
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - P. Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Devin J. Rose
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
12
|
Dough rheology and loaf quality of wheat-cassava bread using different cassava varieties and wheat substitution levels. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Roye C, Bulckaen K, De Bondt Y, Liberloo I, Van De Walle D, Dewettinck K, Courtin CM. Side‐by‐side comparison of composition and structural properties of wheat, rye, oat, and maize bran and their impact on in vitro fermentability. Cereal Chem 2019. [DOI: 10.1002/cche.10213] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chiara Roye
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Leuven Belgium
| | - Karen Bulckaen
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Leuven Belgium
| | - Yamina De Bondt
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Leuven Belgium
| | - Inge Liberloo
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Leuven Belgium
| | - Davy Van De Walle
- Laboratory of Food Technology and Engineering Department of Food Technology, Safety and Health Ghent University Ghent Belgium
| | - Koen Dewettinck
- Laboratory of Food Technology and Engineering Department of Food Technology, Safety and Health Ghent University Ghent Belgium
| | - Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Leuven Belgium
| |
Collapse
|
14
|
Navrotskyi S, Guo G, Baenziger PS, Xu L, Rose DJ. Impact of wheat bran physical properties and chemical composition on whole grain flour mixing and baking properties. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102790] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|