1
|
Xia S, Song J, Ma C, Hao T, Hou Y, Shen S, Li Z, Xue Y, Xue C, Jiang X. A mechanistic investigation into combined influences of NaCl and extrusion temperature on fibrous structures of high-moisture textured yeast protein. Food Chem 2024; 460:140421. [PMID: 39032293 DOI: 10.1016/j.foodchem.2024.140421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
NaCl and extrusion temperature have an important influence on the qualities of high-moisture textured proteins, but the influence mechanism is still unclear. Therefore, this study prepared high-moisture textured yeast protein (HMTYP) with different NaCl contents (0%-4%) under different extrusion temperatures (170 °C, 180 °C) and characterized their physicochemical properties. The results showed that the HMTYP containing 1% and 2% NaCl prepared at 180 °C contained a strong fibrous structure. The possible mechanism was as follows: YP could not be sufficiently melted at 170 °C after adding NaCl, causing a decrease in the structural strength; however, at 180 °C, YP still reached a fully molten state even though 1%-2% NaCl was added. After YP sufficiently melted, NaCl enhanced the cross-linking and aggregation of proteins during cooling, which improved the textural properties of HMTYP. Accordingly, NaCl and extrusion temperature could combine to adjust the fibrous structure and texture of HMTYP.
Collapse
Affiliation(s)
- Songgang Xia
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China
| | - Jian Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China
| | - Chengxin Ma
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China
| | - Tingting Hao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China
| | - Yukun Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China
| | - Shuo Shen
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang, 443003, PR China.
| | - Zhaojie Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China.
| | - Yong Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China; Quanzhou Institute of Marine Bioresources Industry, 362700, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266041, PR China.
| | - Xiaoming Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China; Quanzhou Institute of Marine Bioresources Industry, 362700, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266041, PR China.
| |
Collapse
|
2
|
Al-Saidi SMK, Al-Kharousi ZSN, Rahman MS, Sivakumar N, Suleria HAR, Ashokkumar M, Hussain M, Al-Habsi N. Thermal and structural characteristics of date-pits as digested by Trichoderma reesei. Heliyon 2024; 10:e28313. [PMID: 38560674 PMCID: PMC10979217 DOI: 10.1016/j.heliyon.2024.e28313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
The objective of this study was to develop functional date-pits by mold digestion for the potential use in food products. Whole date-pits (WDP) and defatted date-pits (DDP) were digested by mold Trichoderma reesei at 20 °C. T. reesei consumed date-pits as nutrients for their growth, and DDP showed higher growth of molds as compared to the WDP. The mold digested WDP and DDP samples showed an increased water solubility and hygroscopicity as compared to the samples prepared by autoclaved. This indicated that the mold digestion transformed date-pits to hydrophilic characteristics. Thermal analysis indicated a structural change at -3.2 °C for the untreated WDP and it was followed by a glass transition shift (i.e. onset: 138 °C and a specific heat change: 295 J/kg oC), and an endothermic peak at 196 °C with enthalpy of 68 J/g for the solids melting-decomposition. Similar characteristics were also observed for treated samples with the two glass transitions. The total specific heat changes for WDP, autoclaved-WDP, and digested-WDP were observed as 295, 367, and 328 J/kg oC, respectively. The total specific heat changes for DDP, autoclaved-DDP, and digested-DDP were observed as 778, 1329, and 1877 J/kg oC, respectively. This indicated that mold digestion transformed more amorphous fraction in the DDP. The energy absorption intensities of the Fourier Transform Infrared (FTIR) spectra for the selected functional groups decreased by the mold digestion.
Collapse
Affiliation(s)
- Samar Mohammed Khalaf Al-Saidi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, P. O. Box 34-123, Al-Khod 123, Oman
| | - Zahra Sulaiman Nasser Al-Kharousi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, P. O. Box 34-123, Al-Khod 123, Oman
| | - Mohammad Shafiur Rahman
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, P. O. Box 34-123, Al-Khod 123, Oman
| | - Nallusamy Sivakumar
- Department of Biology, College of Science, Sultan Qaboos University, P. O. Box 34-123, Al-Khod 123, Oman
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Malik Hussain
- School of Science, Western Sydney University, Australia
| | - Nasser Al-Habsi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, P. O. Box 34-123, Al-Khod 123, Oman
| |
Collapse
|
3
|
Duan W, Qiu H, Htwe KK, Wang Z, Liu Y, Wei S, Xia Q, Sun Q, Han Z, Liu S. Correlation between Water Characteristics and Gel Strength in the Gel Formation of Golden Pompano Surimi Induced by Dense Phase Carbon Dioxide. Foods 2023; 12:1090. [PMID: 36900608 PMCID: PMC10000427 DOI: 10.3390/foods12051090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The relationship between the gel quality of golden pompano surimi treated with dense phase carbon dioxide (DPCD) and changes in water characteristics was evaluated. Low-field nuclear magnetic resonance (LF-NMR) and nuclear magnetic resonance imaging were used to monitor changes in the water status of surimi gel under different treatment conditions. Whiteness, water-holding capacity and gel strength were used as the quality indicators of the surimi gel. The results showed that DPCD treatment could significantly increase the whiteness of surimi and the strength of the gel, while the water-holding capacity decreased significantly. LF-NMR analysis showed that, as the DPCD treatment intensity increased, the relaxation component T22 shifted to the right, T23 shifted to the left, the proportion of A22 decreased significantly (p < 0.05) and the proportion of A23 increased significantly (p < 0.05). A correlation analysis of water characteristics and gel strength showed that the water-holding capacity of surimi induced by DPCD was strongly positively correlated with gel strength, while A22 and T23 were strongly negatively correlated with gel strength. This study provides helpful insights into the quality control of DPCD in surimi processing and also provides an approach for the quality evaluation and detection of surimi products.
Collapse
Affiliation(s)
- Weiwen Duan
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hui Qiu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kyi Kyi Htwe
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zefu Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuai Wei
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qiuyu Xia
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qinxiu Sun
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zongyuan Han
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Southern Marine Science and Engineering (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center for Key Technology of Marine Food Deep Processing, Dalian University of Technology, Dalian 116034, China
| |
Collapse
|
4
|
Dai HH, An HZ, Ma YX, Guo YT, Du Y, Zhu XQ, Luo Q. Effects of lysine on the physiochemical properties of plant-protein high-moisture extrudates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Li X, Zhang T, An Y, Yin T, Xiong S, Rong H. Physicochemical Characteristics and Flavor Properties of Texturized Dual-Proteins Extrudates: Effect of Surimi to Soybean Flour Ratio. Foods 2022; 11:foods11223640. [PMID: 36429230 PMCID: PMC9689315 DOI: 10.3390/foods11223640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effects of surimi to soybean flour ratio (0:10, 1:9, 2:8, 3:7, 4:6) on the physicochemical characteristics and flavor properties of dual-proteins extrudates. The increasing ratio of surimi improved the color of extrudates and raised the apparent viscosity of the mixed raw materials, which led to the decrease of extrudates' thickness. The excess ratio of surimi and soybean flour (more than 2:8) was bad for extrudates' physicochemical characteristics with sharply decreased tensile strength, macroscopic longitudinal fracture, broken and unevenly distributed microstructure, increased water mobility and decreased free water content. However, the increasing ratio of surimi had no effect on the protein secondary structure of extrudates. Sensory evaluation, E-tongue and E-nose analysis suggested that adding surimi significantly changed the flavor properties of extrudates, with increased sweetness and umami taste, and an appropriate ratio (2:8 or 3:7) could reduce the beany flavor and without an obvious fishy off-flavor.
Collapse
Affiliation(s)
- Xiaodong Li
- College of Food Science and Technology, National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Tonghao Zhang
- College of Food Science and Technology, National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yueqi An
- College of Food Science and Technology, National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Tao Yin
- College of Food Science and Technology, National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Shanbai Xiong
- College of Food Science and Technology, National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Correspondence:
| | - Hongshan Rong
- Tianmen Jifude Bean Products Co., Ltd., Tianmen 431700, China
| |
Collapse
|
6
|
Fu J, Sun C, Chang Y, Li S, Zhang Y, Fang Y. Structure analysis and quality evaluation of plant-based meat analogs. J Texture Stud 2022. [PMID: 35711124 DOI: 10.1111/jtxs.12705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/04/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022]
Abstract
The growing world's population increases the demand of proteins. Meat products as the major source of high protein food are facing environmental impacts and animal welfare issues. Therefore, plant-based meat analogs are developed and gain a foothold in global markets. The structure design, sensory attributes and nutrient characteristics of meat analogs are crucial points to match the real meat. This review aimed to systematically introduce the structural analysis methods and evaluate meat analog products from quality-related attributes. First, various strategies of analyzing the fibrous structure of meat analogs were illustrated, including microscopic imaging and several optical techniques. Then, representative techniques such as NMR and AFM-IR for analyzing the distribution of moisture and lipid in meat analogs are introduced. In terms of quality, we elaborated on the texture and sensory evaluation methods and dialectically analyzed meat analogs' nutrition, which can provide a guidance for the advanced development of meat analogs.
Collapse
Affiliation(s)
- Jialing Fu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyang Chang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Saiya Li
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Rolandelli G, Farroni AE, Buera MDP. Analysis of molecular mobility in corn and quinoa flours through 1H NMR and its relationship with water distribution, glass transition and enthalpy relaxation. Food Chem 2022; 373:131422. [PMID: 34710693 DOI: 10.1016/j.foodchem.2021.131422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 11/04/2022]
Abstract
Solids-water interactions of corn and quinoa flours were evaluated through 1H NMR, DSC, and water sorption isotherms. Glass transition temperature (Tg), observed by DSC, was better distinguished through FID signals, and correlated to water content through the Gordon and Taylor model. Enthalpy relaxations, identified by thermal analysis at 50-70 °C were studied through transverse relaxation times (T2) measured after Hahn spin-echo sequence, which revealed a rearrangement of the biopolymers structures that cause immobilization of polymer chains and reduced mobility of water molecules with weak interactions with solids (lower T22). The higher lipid content of quinoa flour was manifested after the CPMG sequence (T2 ≈ 100 ms) and caused reduced hygroscopicity and Tg values compared with corn flour systems. 1H NMR resulted efficient for assigning proton populations and understanding the changes in their distribution with temperature, analyzing glass transition and interpreting the implications of enthalpy relaxations processes in corn and quinoa flours.
Collapse
Affiliation(s)
- Guido Rolandelli
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamentos de Industrias y Química Orgánica. Intendente Güiraldes, 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ). Intendente Güiraldes, 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| | - Abel Eduardo Farroni
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Pergamino (INTA - EEA Pergamino). Av. Frondizi km 4.5, 2700 Pergamino, Buenos Aires, Argentina
| | - María Del Pilar Buera
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamentos de Industrias y Química Orgánica. Intendente Güiraldes, 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ). Intendente Güiraldes, 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
8
|
Wang H, van den Berg FW, Zhang W, Czaja TP, Zhang L, Jespersen BM, Lametsch R. Differences in physicochemical properties of high-moisture extrudates prepared from soy and pea protein isolates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Xia S, Xue Y, Xue C, Jiang X, Li J. Structural and rheological properties of meat analogues from Haematococcus pluvialis residue-pea protein by high moisture extrusion. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Li Q, Li S, Guan X, Huang K, Zhu F. Effects of vacuum soaking on the hydration, steaming, and physiochemical properties of japonica rice. Biosci Biotechnol Biochem 2021; 85:634-642. [PMID: 33590867 DOI: 10.1093/bbb/zbaa068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/25/2020] [Indexed: 11/13/2022]
Abstract
Soaking is an essential step in the processing of various rice products. In this study, the influences of vacuum soaking on hydration, steaming, and physiochemical properties of rice were investigated. Results showed that vacuum soaking accelerated water absorption as well as affected the mobility and density of water protons inside rice during soaking. Vacuum soaking could considerably shorten the optimal steaming time from 58 to 32 min and reduce the adhesiveness of steamed rice. Microstructure analysis of rice revealed that porous structure was formed on rice surface and the arrangement of starch granules became loosened after vacuum soaking. Moreover, vacuum soaking slightly reduced the relative crystallinity of rice starches without altering the crystalline type. The gelatinization temperature as well as the peak and trough viscosity was also decreased after vacuum soaking. Our study suggested that vacuum soaking was conducive to improve the soaking and steaming properties of rice.
Collapse
Affiliation(s)
- Qiuyun Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kai Huang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fengbo Zhu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
11
|
Thermal Characteristics and Proton Mobility of Date-Pits and their Alkaline Treated Fibers. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09257-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Effects of material characteristics on the structural characteristics and flavor substances retention of meat analogs. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105752] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Effects of tamarind seed polysaccharide on gelatinization, rheological, and structural properties of corn starch with different amylose/amylopectin ratios. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105854] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Mechanochemical effects of ultrasound on mung bean starch and its octenyl succinic anhydride modified starch. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00374-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Zhang Y, Dai Y, Yu K, Ding X, Hou H, Wang W, Zhang H, Li X, Dong H. Preparation of octenyl succinic anhydride‐modified cassava starch by the ultrasonic‐assisted method and its influence mechanism. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yujie Zhang
- College of Food Science and Engineering Shandong Agricultural University Tai'an PR China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai'an PR China
| | - Yangyong Dai
- College of Food Science and Engineering Shandong Agricultural University Tai'an PR China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai'an PR China
| | - Kexue Yu
- College of Food Science and Engineering Shandong Institute of Agricultural Engineering Ji'nan PR China
| | - Xiuzhen Ding
- College of Food Science and Engineering Shandong Agricultural University Tai'an PR China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai'an PR China
| | - Hanxue Hou
- College of Food Science and Engineering Shandong Agricultural University Tai'an PR China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai'an PR China
| | - Wentao Wang
- College of Food Science and Engineering Shandong Agricultural University Tai'an PR China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai'an PR China
| | - Hui Zhang
- College of Food Science and Engineering Shandong Agricultural University Tai'an PR China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai'an PR China
| | - Xiangyang Li
- College of Food Science and Engineering Shandong Agricultural University Tai'an PR China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai'an PR China
| | - Haizhou Dong
- College of Food Science and Engineering Shandong Agricultural University Tai'an PR China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai'an PR China
| |
Collapse
|
16
|
Yubonmhat K, Chinwong S, Maleelai N, Saowadee N, Youngdee W. Cellular water and proton relaxation times of Thai rice kernels during grain development and storage. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Li S, Luo Z, Guan X, Huang K, Li Q, Zhu F, Liu J. Effect of ultrasonic treatment on the hydration and physicochemical properties of brewing rice. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Real-time dynamic analysis with low-field nuclear magnetic resonance of residual oil and sophorolipids concentrations in the fermentation process of Starmerella bombicola. J Microbiol Methods 2019; 157:9-15. [DOI: 10.1016/j.mimet.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/26/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022]
|