1
|
Xie L, Lu L, Zhao L, Peng J, Zhou W. Improvement of okara noodle quality by modifying the soluble/insoluble dietary fibre ratio. Food Chem 2024; 464:141566. [PMID: 39418946 DOI: 10.1016/j.foodchem.2024.141566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/10/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
This study investigated the effect of okara modified through cellulase hydrolysis and extrusion on noodle quality. Modification increased the soluble dietary fibre/insoluble dietary fibre (SDF/IDF) ratio in okara, improved appearance, cooking, and texture, and reduced starch digestibility of okara noodles. The 4.0 % cellulase enzymolysis-extruded okara noodles exhibited the quality closest to that of wheat noodles, with an estimated glycaemic index (eGI) < 55 (low-GI). As the okara SDF/IDF ratio increased, the water mobility of noodles decreased, indicating that an increase in the SDF/IDF ratio reduced competitive water absorption of okara. In addition, increased SDF/IDF ratio increased β-sheet content and promoted the enhanced hydrogen bond interactions between proteins and polymerisation between gliadin and glutenin. Moreover, the microstructure of noodles with a higher SDF/IDF ratio of okara was more continuous and compact, further confirming the promotional effect of okara with a higher SDF/IDF ratio on the quality of okara noodles.
Collapse
Affiliation(s)
- Le Xie
- National Engineering Research Center for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.; Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Lu Lu
- National Engineering Research Center for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Liangzhong Zhao
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Jing Peng
- National Engineering Research Center for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China..
| | - Wenhua Zhou
- National Engineering Research Center for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China..
| |
Collapse
|
2
|
Mudau M, Chinma CE, Ledbetter M, Wilkin J, Adebo OA. Gas chromatography-mass spectrometry analysis of metabolites in finger millet and Bambara groundnut as affected by traditional and novel food processing. J Food Sci 2024; 89:6394-6412. [PMID: 39219001 DOI: 10.1111/1750-3841.17337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Metabolite profiling is an analytical technique used to assess metabolites in complex biological samples. This technique allows for the identification of both targeted and untargeted metabolites. In this study, the effect of traditional (fermentation and malting) and novel processing (ultrasonication) on the metabolites of finger millet (FM) and Bambara groundnut (BGN) flour was investigated using gas chromatography-mass spectrometry. Various metabolite classes, including amino acids, alcohol, aldehyde, organic acid, ester, fatty acids, glycoside, and sugar, were identified in FM and BGN flours. The adopted processing techniques impacted metabolite composition, as evidenced by substantial variations in volatile compound levels and metabolite composition among the FM and BGN samples before and after traditional and novel processing. Important health-promoting compounds, such as oleic acid, linoelaidic acid, and linoleic acid, were identified at their highest levels in fermented FM and BGN flours. The results obtained from this study offer an important context for monitoring and regulating the metabolite composition of FM and BGN flours under traditional and novel processing. PRACTICAL APPLICATION: Fermentation, malting, and ultrasonication induced desirable changes in some health-promoting compounds of finger millet and Bambara groundnut flours. The food and pharmaceutical industries could benefit from these traditional- and novel-modified flours as they could be used as improved food sources with health benefits.
Collapse
Affiliation(s)
- Masala Mudau
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
| | - Chiemela Enyinnaya Chinma
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
- Department of Food Science and Technology, Federal University of Technology, Minna, Nigeria
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Minna, Nigeria
| | - Moira Ledbetter
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, UK
| | - Jon Wilkin
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, UK
| | - Oluwafemi Ayodeji Adebo
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
| |
Collapse
|
3
|
Mesta-Corral M, Gómez-García R, Balagurusamy N, Torres-León C, Hernández-Almanza AY. Technological and Nutritional Aspects of Bread Production: An Overview of Current Status and Future Challenges. Foods 2024; 13:2062. [PMID: 38998567 PMCID: PMC11241233 DOI: 10.3390/foods13132062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Bakery products, especially bread, exist in many homes worldwide. One of the main reasons for its high consumption is that the main raw material is wheat, a cereal that can adapt to a wide variety of soils and climates. However, the nutritional quality of this raw material decreases during its industrial processing, decreasing the value of fibers, proteins, and minerals. Therefore, bread has become a product of high interest to increase its nutritional value. Due to the high consumption of bread, this paper provides a general description of the physicochemical and rheological changes of the dough, as well as the sensory properties of bread by incorporating alternative flours such as beans, lentils, and soy (among others). The reviewed data show that alternative flours can improve fiber, macro, and micronutrient content. The high fiber content reduces the quality of the texture of the products. However, new processing steps or cooking protocols, namely flour proportions, temperature, cooking, and fermentation time, can allow adjusting production variables and optimization to potentially overcome the decrease in sensory quality and preserve consumer acceptance.
Collapse
Affiliation(s)
- Mariana Mesta-Corral
- Food Products Research and Development Lab, Unidad Torreón, School of Biological Science, Universidad Autonoma de Coahuila, Torreón 27276, Coahuila, Mexico
- Center for Interdisciplinary Studies and Research, Unidad Saltillo, Universidad Autonoma de Coahuila, Arteaga 25350, Coahuila, Mexico
| | - Ricardo Gómez-García
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Unidad Torreón, Facultad de Ciencias Biológicas, Universidad Autonoma de Coahuila, Torreón 27276, Coahuila, Mexico
| | - Cristian Torres-León
- Research Center and Ethnobiological Garden, Unidad Torreón, Universidad Autonoma de Coahuila, Viesca 27480, Coahuila, Mexico
- Agri-Food and Agro-Industrial Bioeconomy Research Group, Unidad Torreón, Universidad Autonoma de Coahuila, Torreón 27276, Coahuila, Mexico
| | - Ayerim Y Hernández-Almanza
- Food Products Research and Development Lab, Unidad Torreón, School of Biological Science, Universidad Autonoma de Coahuila, Torreón 27276, Coahuila, Mexico
| |
Collapse
|
4
|
Li H, Wu Q, Guo Y, Dai Y, Ping Y, Chen Z, Zhao B. Esterified wheat bran: Physicochemical properties, structure and quality improvement of Chinese steamed bread during refrigerated storage. Food Chem 2024; 441:138324. [PMID: 38176145 DOI: 10.1016/j.foodchem.2023.138324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
To develop the application of wheat bran and improve the nutrition and anti-staling capacity of Chinese steamed bread (CSB), oleic acid-esterified wheat bran (OWB) was prepared by esterification of wheat bran with oleic acid, and its physicochemical properties, structure, and quality improvement for CSB during refrigerated storage were investigated. The hydrophilic-lipophilic balance value of OWB was 16.0, the maximum degree of substitution was 0.146, and its emulsifying capacity was similar to that of glycerol monostearate. The starch gelatinization degree of CSB containing 3 % OWB and the control decreased by 19.55 % and 27.12 % within 7 days of refrigerated storage, respectively, while the hardness of CSB with OWB was lower than that with wheat bran. OWB inhibited starch recrystallization and increased bound water in the corresponding CSB, which effectively delayed starch retrogradation. OWB had a positive emulsifying capacity and showed potential as a functional material for preventing retrogradation of starch-based foods.
Collapse
Affiliation(s)
- Hua Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou 450001, China.
| | - Qingfeng Wu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Yanyan Guo
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Ya Dai
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Yali Ping
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhenzhen Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Beibei Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
5
|
Cingöz A, Akpinar Ö, Sayaslan A. Effect of addition of wheat bran hydrolysate on bread properties. J Food Sci 2024; 89:2567-2580. [PMID: 38532713 DOI: 10.1111/1750-3841.17015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/28/2024]
Abstract
Although the addition of bran to bread makes it healthier and more functional, it brings with it some technological problems. One way to eliminate these problems is hydrothermal pretreatment of wheat bran. In this study, five different ratios (10%, 20%, 30%, 50%, and 100%) of hydrolysates from hydrothermal pretreatment of wheat bran (150°C, 30 min) were substituted with dough-kneading water during dough kneading for bread making. The physical, chemical, functional, textural and important starch fractions of the bread produced were determined. The addition of hydrolysate in different amounts to the dough-kneading water resulted in similar physical properties (height, specific volume, and crust color) as the control bread. While the addition of hydrolysate decreased the hardness of the breads, it positively improved important starch fractions (increasing the amount of slowly digestible starch and decreasing the amount of rapidly digestible starch). It also increased antioxidant capacity (iron (III) reducing antioxidant power, ABTS, and DPPH (2,2-diphenyl-1-picrylhydrazyl) and reduced the starch hydrolysis index of the bread. It was shown that the hydrolysate obtained after the hydrothermal treatment of bran could be used in bread making to satisfy the demand for products preferred by consumers from both health and sensory points of view.
Collapse
Affiliation(s)
- Ali Cingöz
- Department of Food Engineering, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Özlem Akpinar
- Department of Food Engineering, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Abdulvahit Sayaslan
- Department of Food Engineering, Karamanoğlu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
6
|
Influence of Lactobacillus (LAB) Fermentation on the Enhancement of Branched Chain Amino Acids and Antioxidant Properties in Bran among Wheat By-Products. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The main objective of this study was to enhance the nutritional properties, including branched chain amino acids (BCAAs), through the solid-state fermentation (SSF) of wheat bran (WB) using lactic acid bacteria (LAB). The physicochemical properties, amino acid profiles, bioactive components, and antioxidant properties of raw and sterilized WB were compared with those of WB fermented with five different LAB strains. The highest level of BCAAs, isoleucine (Ile; 2.557 ± 0.05 mg/100 g), leucine (Leu; 7.703 ± 0.40 mg/100 g), and valine (Val; 7.207 ± 0.37 mg/100 g), was displayed in the WB fermented with Lactobacillus acidophilus (L.A WB). In addition, L.A WB showed the highest amount of total phenolic and flavonoid contents (2.80 mg GAE/g and 1.01 mg CE/g, respectively), and the highest Trolox equivalent antioxidant capacity (9.88 mM TE/g). Statistical analysis clearly revealed that L.A WB presented the highest abundance of branched chain amino acids as well as bioactive components. Overall, this study distinctly implemented the possibility of fermented WB with enhanced BCAAs for application in future functional food through experimental and statistical observations.
Collapse
|
7
|
Torbica A, Radosavljević M, Belović M, Tamilselvan T, Prabhasankar P. Biotechnological tools for cereal and pseudocereal dietary fibre modification in the bakery products creation – Advantages, disadvantages and challenges. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Lin S, Jin X, Gao J, Qiu Z, Ying J, Wang Y, Dong Z, Zhou W. Impact of wheat bran micronization on dough properties and bread quality: Part II - Quality, antioxidant and nutritional properties of bread. Food Chem 2022; 396:133631. [PMID: 35839722 DOI: 10.1016/j.foodchem.2022.133631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 05/07/2022] [Accepted: 07/02/2022] [Indexed: 12/23/2022]
Abstract
To investigate the impact of superfine grinding of wheat bran on bread quality, antioxidant and nutritional properties, bran with different particle sizes (coarse, D50 of 362.3 μm; medium, 60.4 μm; superfine, 11.3 μm) were produced and fortified to white bread at three levels (10, 20 and 30%). At 20% fortification, compared to coarse bran, superfine bran increased the hardness and reduced the brightness of bread crumb by 56.3 and 3.30%, respectively, while it decreased bread's cell size by 10.7% and insignificantly impacted on bread's specific volume and porosity. Superfine bran retarded bread staling by 8.3% than coarse bran. It resulted in significantly better sensory attributes of bread in taste, texture and general palatability, and the fortified bread was overall acceptable (score > 6). Moreover, faster release of antioxidants (285-353% higher k), slower release of glucose (10.8% lower k), 3.76% less rapidly digestible starch, 5.65% more slowly digestible starch and 13.2% more resistant starch were found in the superfine group than the coarse one. Results demonstrated the potential of 20% fortification of superfine bran in developing fibre-enriched bread with satisfactory quality, increased antioxidant property and improved glycaemic modulation.
Collapse
Affiliation(s)
- Suyun Lin
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Xiaoxuan Jin
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Jing Gao
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Ziyou Qiu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Jian Ying
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition & Health Research Institute, Beijing 102209, China
| | - Yong Wang
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition & Health Research Institute, Beijing 102209, China
| | - Zhizhong Dong
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition & Health Research Institute, Beijing 102209, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China.
| |
Collapse
|
9
|
Ma S, Wang Z, Liu H, Li L, Zheng X, Tian X, Sun B, Wang X. Supplementation of wheat flour products with wheat bran dietary fiber: Purpose, mechanisms, and challenges. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Effects of Different Pilot-Scale Milling Methods on Bioactive Components and End-Use Properties of Whole Wheat Flour. Foods 2021; 10:foods10112857. [PMID: 34829138 PMCID: PMC8623663 DOI: 10.3390/foods10112857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
The health benefits from consumption of whole wheat products are widely recognized. This study investigated the effects of different pilot-scale milling methods on physicochemical properties, bioactive components, Chinese steamed bread (CSB), and Chinese leavened pancakes (CLP) qualities of whole wheat flour (WWF). The results indicated that WWF-1 from the reconstitution of brans processed by a hammer mill had the best CSB and CLP quality overall. WWF from entire grain grinding by a jet mill (65 Hz) contained the highest concentration of bioactive components including dietary fibers (DF) and phenolic acids. A finer particle size did not necessarily result in a higher content of phenolic antioxidants in WWF. DF contents and damaged starch were negatively correlated with CSB and CLP quality. Compromised reduced quality observed in CLP made from WWF indicated its potentially higher acceptance as a whole-grain product.
Collapse
|
11
|
Effects of Different Amylose Contents of Foxtail Millet Flour Varieties on Textural Properties of Chinese Steamed Bread. Processes (Basel) 2021. [DOI: 10.3390/pr9071131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to improve the nutritional value and quality of steamed bread, and promote the industrial development of the whole-grain food industry, a texture analyzer was used to study the effects of cultivars of whole foxtail millet flour (WFMF) on the texture of Chinese steamed bread (CSB). Orthogonal partial least squares discriminant analysis (OPLS-DA) was also conducted. The addition of different cultivars of WFMF significantly altered the height–diameter ratio, specific volume, hardness, cohesiveness, gumminess, and chewiness of CSB (p < 0.05). Large amounts of foxtail millet flour significantly increased the hardness, gumminess and chewiness of the bread (p < 0.05), and the bread height–diameter ratio, specific volume, cohesiveness and springiness significantly decreased (p < 0.05). We screened sensory evaluation, chewiness, specific volume, and hardness as the signature differences in the quality components according to the variable influence on the projection (VIP) values. OPLS-DA could distinguish the addition levels of different samples.
Collapse
|
12
|
Wheat Bran Modifications for Enhanced Nutrition and Functionality in Selected Food Products. Molecules 2021; 26:molecules26133918. [PMID: 34206885 PMCID: PMC8271396 DOI: 10.3390/molecules26133918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/12/2023] Open
Abstract
The established use of wheat bran (WB) as a food ingredient is related to the nutritional components locked in its dietary fibre. Concurrently, the technological impairment it poses has impeded its use in product formulations. For over two decades, several modifications have been investigated to combat this problem. Ninety-three (93) studies (review and original research) published in English between January 1997 and April 2021 reporting WB modifications for improved nutritional, structural, and functional properties and prospective utilisation in food formulations were included in this paper. The modification methods include mechanical (milling), bioprocessing (enzymatic hydrolysis and fermentation with yeasts and bacteria), and thermal (dry heat, extrusion, autoclaving), treatments. This review condenses the current knowledge on the single and combined impact of various WB pre-treatments on its antioxidant profile, fibre solubilisation, hydration properties, microstructure, chemical properties, and technological properties. The use of modified WB in gluten-free, baked, and other food products was reviewed and possible gaps for future research are proposed. The application of modified WB will have broader application prospects in food formulations.
Collapse
|
13
|
Cheng W, Sun Y, Fan M, Li Y, Wang L, Qian H. Wheat bran, as the resource of dietary fiber: a review. Crit Rev Food Sci Nutr 2021; 62:7269-7281. [PMID: 33938774 DOI: 10.1080/10408398.2021.1913399] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Wheat bran is a major by-product of white flour milling and had been produced in large quantities around the world; it is rich in dietary fiber and had already been used in many products such as whole grain baking or high dietary fiber addition. It has been confirmed that a sufficient intake of dietary fiber in wheat bran with appropriate physiological functions is beneficial to human health. Wheat bran had been considered as the addition with a large potential for improving the nutritional condition of the human body based on the dietary fiber supplement. The present review summarized the available information on wheat bran related to its dietary fiber functions, which may be helpful for further development of wheat bran as dietary fiber resource.
Collapse
Affiliation(s)
- Wen Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Effect of Purple-Colored Wheat Bran Addition on Quality and Antioxidant Property of Bread and Optimization of Bread-Making Conditions. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purple-colored wheat bran was blended with flour at different ratios. The dough mixing characteristics of the flour–bran blends and quality characteristics and antioxidant activity of the bread prepared with the blends were investigated. Additionally, response surface methodology (RSM) was used to optimize the formula and processing conditions for the bread prepared with the blend at 30% bran. Solvent retention capacity (SRC), as a quality characteristic of the blends, showed that water absorption and damaged starch contribution increased proportionally as the bran blending ratio increased. Dough mixing patterns of blends determined by a mixograph exhibited deteriorated gluten strength by increasing the bran blending ratio. The total phenolic and anthocyanin contents and antioxidant activity (ABTS and DPPH radical scavenging activity) of the bread increased proportionally as the bran blending ratio increased. RSM analysis revealed that the best-fitted model for the results was a quadratic polynomial model with regression coefficient values close to or more than 0.900 for all responses. Optimized conditions were 68.1 g water, 4.0 min mixing time, and 67.3 min fermentation time. Overall, purple-colored wheat bran was successfully applied to produce bread with healthy functional properties by controlling water and mixing time.
Collapse
|
15
|
Dos Santos Gomes AC, Casciatori FP, Gomes E, da Costa Carreira Nunes C, Moretti MMS, Thoméo JC. Growth kinetics of Myceliophthora thermophila M.7·7 in solid-state cultivation. J Appl Microbiol 2020; 130:90-99. [PMID: 32640074 DOI: 10.1111/jam.14774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 01/19/2023]
Abstract
AIMS This work aimed to estimate the growth of Myceliophthora thermophila M.7·7 in solid-state cultivation (SSC) through quantification of N-acetyl-d-glucosamine (NAG) and enzyme activity. METHODS AND RESULTS The fungus was cultivated in sugarcane bagasse and wheat bran. A consistent statistical analysis was done to assess the reliability of experimental data. Logistic model equation was fitted to experimental data and growth parameters were estimated. The results showed strong influence of the sample size on NAG and a minimum recommended sample size was identified. Scanning electron microscopy (SEM) was used to identify the strategy of substrate colonization. Wheat bran was attacked firstly, while sugarcane bagasse was consumed after wheat bran depletion. The biomass growth was poorly estimated by secretion kinetics of α-amylase, endoglucanase, protease and xylanase, but enzyme kinetics were important for understanding substrate colonization. CONCLUSIONS In conclusion, the NAG concentration was strongly affected by the sample size and sampling procedure. The strategy of fungal colonization on the substrates was well characterized through SEM analysis. The colonization strategy has direct influence on the kinetic parameters of the logistic model. Myceliophthora thermophila has a well-defined dynamic of enzyme secretion to degrade the substrate, although the kinetics of enzyme secretion has shown not adequate to characterize the kinetics of fungal growth. SIGNIFICANCE AND IMPACT OF THE STUDY The paper provides reliable growth kinetic parameters in the SSC of the cellulase producer fungus M. thermophila M.7·7, as well as a robust analysis on three indirect methods (NAG, enzymes and SEM) for estimation of fungal development.
Collapse
Affiliation(s)
- A C Dos Santos Gomes
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto São Paulo, Brazil
| | - F P Casciatori
- Chemical Engineering Department, Graduate Program of Chemical Engineering, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - E Gomes
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto São Paulo, Brazil
| | - C da Costa Carreira Nunes
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto São Paulo, Brazil
| | - M M S Moretti
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto São Paulo, Brazil
| | - J C Thoméo
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto São Paulo, Brazil
| |
Collapse
|
16
|
Fu Z, Wu H, Wu M, Huang Z, Zhang M. Effect of Wheat Bran Fiber on the Behaviors of Maize Starch Based Films. STARCH-STARKE 2020. [DOI: 10.1002/star.201900319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zong‐Qiang Fu
- School of Materials Science and Mechanical Engineering Beijing Technology and Business University Beijing 100048 China
| | - Hong‐Jian Wu
- School of Materials Science and Mechanical Engineering Beijing Technology and Business University Beijing 100048 China
| | - Min Wu
- College of Engineering China Agricultural University Beijing 100083 China
| | - Zhi‐Gang Huang
- School of Materials Science and Mechanical Engineering Beijing Technology and Business University Beijing 100048 China
| | - Miao Zhang
- School of Materials Science and Mechanical Engineering Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
17
|
APPLICATION OF CO-BIOPROCESSING TECHNIQUES (ENZYMATIC HYDROLYSIS AND FERMANTATION) FOR IMPROVING THE NUTRITIONAL VALUE OF WHEAT BRAN AS FOOD FUNCTIONAL INGREDIENS. EUREKA: LIFE SCIENCES 2019. [DOI: 10.21303/2504-5695.2019.00992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Last time the food industry pays the great attention to questions, connected with changing existing technologies for raising the efficacy of the raw materials complex processing and increasing the output of high-quality products and food ingredients with a minimal amount of waste. Cereal crops are the most reach source of functional ingredients and main component in the human food ration. The technological process of cereal crops processing at enterprises is closely connected with creating a great number of secondary raw material resources and its further utilization.
For confirming the efficacy of using secondary products of grain processing as cheap raw material resources of dietary fiber and physiologically functional ingredients, there is characterized the accessibility of their biotransformation that gives a possibility to get biologically active substances of different chemical nature with a wide spectrum of physiological effects.
Secondary products of cereal crops processing (bran) are multi-component substrates, formed of different histological layers of wheat grains after comminution, consisted of (external pericarp, internal pericarp, grain coat, hyaline and aleurone layer of a grain coat).
Wheat bran is rich in dietary fiber, nutritive and phytochemical substances, that is why, it is most often used for feeding animals. But for today there are important proofs of using it in the food industry.
The development of new innovative technologies, modern achievements in microbiology and biotechnology have an important value for secondary products of grain processing, because they allow to conduct directed technological processes at the qualitatively new level that provides using soft regimes of vegetable raw materials processing, allowing to preserve natural biologically active substances and nutrients.
The modeling of the combined complex processing that includes enzymatic hydrolysis and fermentation by microorganisms improves technological, sensor and also nutritive and physiologically functional properties of wheat bran at the expanse of: bioavailability increase of phenol compounds, vitamins and minerals, assimilability of proteins and decrease of the content of anti-nutritive compounds.
Enzymatic preparations allow to use vegetable raw materials rationally, to intensify technological processes, in such a way increasing the output of biologically active substances and to widen the assortment of created products. The process of wheat bran formation results in increasing the nutritional value, enriching the biopolymeric complex with probiotic microorganisms and prebiotic substances.
Based on the structural peculiarities and multicomponent composition of wheat bran, presented and studied in the article, it has been established, that the use of the directed modification allows to get functional ingredients and products with set properties that influence the human health favorably. So, wheat bran must be used not only in agriculture as a cattle fodder, but also in the food industry.
Collapse
|
18
|
Jerome RE, Singh SK, Dwivedi M. Process analytical technology for bakery industry: A review. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rifna E. Jerome
- Department of Food Process EngineeringNational Institute of Technology Rourkela Rourkela Odisha India
| | - Sushil K. Singh
- Department of Food Process EngineeringNational Institute of Technology Rourkela Rourkela Odisha India
| | - Madhuresh Dwivedi
- Department of Food Process EngineeringNational Institute of Technology Rourkela Rourkela Odisha India
| |
Collapse
|
19
|
Sakandar HA, Hussain R, Kubow S, Sadiq FA, Huang W, Imran M. Sourdough bread: A contemporary cereal fermented product. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13883] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hafiz Arbab Sakandar
- Faculty of Biological Sciences, Microbiology Department Quaid‐I‐Azam University Islamabad Pakistan
- Faculty of Agricultural and Environmental Sciences, School of Human Nutrition McGill University Montreal Quebec Canada
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Raza Hussain
- Faculty of Agricultural and Environmental Sciences, School of Human Nutrition McGill University Montreal Quebec Canada
| | - Stan Kubow
- Faculty of Agricultural and Environmental Sciences, School of Human Nutrition McGill University Montreal Quebec Canada
| | | | - Weining Huang
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Muhammad Imran
- Faculty of Biological Sciences, Microbiology Department Quaid‐I‐Azam University Islamabad Pakistan
| |
Collapse
|