1
|
Guamán SA, Elhadi A, Salama AAK, Manuelian CL, Caja G, Albanell E. Beta-Glucans Improve the Mammary Innate Immune Response to Endotoxin Challenge in Dairy Ewes. Animals (Basel) 2024; 14:3023. [PMID: 39457952 PMCID: PMC11505092 DOI: 10.3390/ani14203023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
This study evaluated short-term immune responses of dairy ewes supplemented with barley β-glucan (BG) following an intramammary Escherichia coli lipopolysaccharide (LPS) challenge. In the adaptation period, 36 ewes were fed an alfalfa hay diet ad libitum and barley grain cv. Hispanic (3.8% BG). Then, ewes were assigned into three experimental groups: (1) Control (CON), the same previous diet (13.3 g BG/d); (2) high β-glucans barley (HBG), new barley (cv. Annapurna) containing 10% BG (35 g BG/d); (3) intraperitoneally injected (INP) with a 1.4% BG solution dose (2 g BG/ewe). At d 9, all ewes were infused with an E. coli LPS or saline solution in each udder half. After the challenge, rectal temperature (RT), milk yield and composition, somatic cell count (SCC), and plasma interleukins (IL-1α and IL-1β) were monitored daily. The INP treatment revealed a transitory increase in RT and decreased milk yield by 38%. Milk fat, protein, and SCC increased in LPS-treated udders but not by BG treatment. The IL-1α plasma concentration was similar among groups but INP ewes showed a lower IL-1β concentration suggesting a lower inflammatory response. The BG administration appears more effective intraperitoneally than orally, which needs additional study.
Collapse
Affiliation(s)
- Santiago A. Guamán
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
- Sede Orellana, Escuela Superior Politécnica de Chimborazo (ESPOCH), El Coca 220150, Ecuador
| | - Abdelaali Elhadi
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| | - Ahmed A. K. Salama
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| | - Carmen L. Manuelian
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| | - Gerardo Caja
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| | - Elena Albanell
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| |
Collapse
|
2
|
Li W, Xu R, Qin S, Song Q, Guo B, Li M, Zhang Y, Zhang B. Cereal dietary fiber regulates the quality of whole grain products: Interaction between composition, modification and processing adaptability. Int J Biol Macromol 2024; 274:133223. [PMID: 38897509 DOI: 10.1016/j.ijbiomac.2024.133223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The coarse texture and difficulty in processing dietary fiber (DF) in cereal bran have become limiting factors for the development of the whole cereal grain (WCG) food industry. To promote the development of the WCG industry, this review comprehensively summarizes the various forms and structures of cereal DF, including key features such as molecular weight, chain structure, and substitution groups. Different modification methods for changing the chemical structure of DF and their effects on the modification methods on physicochemical properties and biological activities of DF are discussed systematically. Furthermore, the review focusses on exploring the interactions between DF and dough components and discusses the effects on the gluten network structure, starch gelatinization and retrogradation, fermentation, glass transition, gelation, and rheological and crystalline characteristics of dough. Additionally, opportunities and challenges regarding the further development of DF for the flour products are also reviewed. The objective of this review is to establish a comprehensive foundation for the precise modification of cereal DF, particularly focusing on its application in dough-related products, and to advance the development and production of WCG products.
Collapse
Affiliation(s)
- Wen Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Rui Xu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Shaoshuang Qin
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Qiaozhi Song
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Boli Guo
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China.
| | - Ming Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China.
| | - Yingquan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Bo Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| |
Collapse
|
3
|
Yao H, Yin J, Nie S. Structural characteristics and biological activities of polysaccharides from barley: a review. Food Funct 2024; 15:3246-3258. [PMID: 38446134 DOI: 10.1039/d3fo05793c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Barley (Hordeum vulgare L.) is rich in starch and non-starch polysaccharides (NSPs), especially β-glucan and arabinoxylan. Genotypes and isolation methods may affect their structural characteristics, properties and biological activities. The structure-activity relationships of NSPs in barley have not been paid much attention. This review summarizes the extraction methods, structural characteristics and physicochemical properties of barley polysaccharides. Moreover, the roles of barley β-glucan and arabinoxylan in the immune system, glucose metabolism, regulation of lipid metabolism and absorption of mineral elements are summarized. This review may help in the development of functional products in barley.
Collapse
Affiliation(s)
- Haoyingye Yao
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Junyi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
4
|
Marcotuli I, Caranfa D, Colasuonno P, Giove SL, Gadaleta A. Exploring Aegilops caudata: A Comprehensive Study of the CslF6 Gene and β-Glucan. Genes (Basel) 2024; 15:168. [PMID: 38397157 PMCID: PMC10887849 DOI: 10.3390/genes15020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
In the quest for sustainable and nutritious food sources, exploration of ancient grains and wild relatives of cultivated cereals has gained attention. Aegilops caudata, a wild wheatgrass species, stands out as a promising genetic resource due to its potential for crop enhancement and intriguing nutritional properties. This manuscript investigates the CslF6 gene sequence and protein structure of Aegilops caudata, employing comparative analysis with other grass species to identify potential differences impacting β-glucan content. The study involves comprehensive isolation and characterization of the CslF6 gene in Ae. caudata, utilizing genomic sequence analysis, protein structure prediction, and comparative genomics. Comparisons with sequences from diverse monocots reveal evolutionary relationships, highlighting high identities with wheat genomes. Specific amino acid motifs in the CslF6 enzyme sequence, particularly those proximal to key catalytic motifs, exhibit variations among monocot species. These differences likely contribute to alterations in β-glucan composition, notably impacting the DP3:DP4 ratio, which is crucial for understanding and modulating the final β-glucan content. The study positions Ae. caudata uniquely within the evolutionary landscape of CslF6 among monocots, suggesting potential genetic divergence or unique functional adaptations within this species. Overall, this investigation enriches our understanding of β-glucan biosynthesis, shedding light on the role of specific amino acid residues in modulating enzymatic activity and polysaccharide composition.
Collapse
Affiliation(s)
- Ilaria Marcotuli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via G. Amendola 165/A, 70126 Bari, Italy; (D.C.); (P.C.); (S.L.G.); (A.G.)
| | | | | | | | | |
Collapse
|
5
|
Lante A, Canazza E, Tessari P. Beta-Glucans of Cereals: Functional and Technological Properties. Nutrients 2023; 15:2124. [PMID: 37432266 DOI: 10.3390/nu15092124] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 07/12/2023] Open
Abstract
β-glucans are a polymeric dietary fiber characterized by β-(1,3) and β-(1,4) glycosidic bonds between glucose monomers. They are often used as thickeners, stabilizers, and fat substitutes in foods. The functional and technological quality of β-glucans is attributed to their origin/source, molecular weight, and structural properties. In particular, physical treatments such as drying, cooking, freezing, and refrigeration influence their molecular, morphological, and rheological characteristics. In addition to their useful technical qualities, β-glucans are recognized for their numerous beneficial impacts on human health. For this reason, the European Food Safety Authority (EFSA) has provided a positive opinion on health claims such as cholesterol lowering and hypoglycemic properties relating to oats and barley β-glucans. This paper provides insight into the properties of β-glucans and different treatments affecting their characteristics and then reviews the latest research on β-glucans as a functional ingredient for people with type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Anna Lante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Padova, Italy
| | - Elisa Canazza
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Padova, Italy
| | - Paolo Tessari
- Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy
| |
Collapse
|
6
|
Laitinen M, Mäkelä-Salmi N, Maina NH. Gelation of cereal β-glucan after partial dissolution at physiological temperature: Effect of molecular structure. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Relevance of β-Glucan Molecular Properties on Its Suitability as Health Promoting Bread Ingredient. Nutrients 2022; 14:nu14081570. [PMID: 35458132 PMCID: PMC9032243 DOI: 10.3390/nu14081570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
The fate of β-glucan (BG) health promoting properties during food production is crucial, but not predictable yet. Therefore, high molar mass BG (hBG) and control BG (cBG) were extracted from two barley varieties, characterized and added to wheat breads at levels of 3% and 6%. Bread quality criteria, carbohydrate contents and BG content and structural properties were determined. Additionally, breads were subjected to an in vitro digestion. The BG content in the chyme, molar mass, molar ratio, viscosity and bile acid retention were determined. The hBG and the cBG decreased loaf volume and increased crumb hardness with increasing BG content. The reduction in BG content during bread making was similar for hBG and cBG, but the molar mass of cBG decreased to a greater extent. As a result, only 10% of cBG entering in vitro digestion were found in the chyme afterwards, while 40% of the ingested hBG were detected. Molar mass reduction was much more severe for cBG compared to hBG. The use of hBG showed higher viscosity and better bile acid retention, indicating cholesterol lowering properties, compared to similar or higher amounts of cBG. These results provide valuable knowledge on the criteria to select BG-rich raw materials for ideal health promoting properties.
Collapse
|
8
|
Wan Y, Xu X, Gilbert RG, Sullivan MA. A Review on the Structure and Anti-Diabetic (Type 2) Functions of β-Glucans. Foods 2021; 11:57. [PMID: 35010185 PMCID: PMC8750484 DOI: 10.3390/foods11010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes, a long-term chronic metabolic disease, causes severe and increasing economic and health problems globally. There is growing evidence that β-glucans can function as bioactive macromolecules that help control type 2 diabetes with minimal side effects. However, conflicting conclusions about the antidiabetic activities of β-glucans have been published, potentially resulting from incomplete understanding of their precise structural characteristics. This review aims to increase clarity on the structure-function relationships of β-glucans in treating type 2 diabetes by examining detailed structural and conformational features of naturally derived β-glucans, as well as both chemical and instrumental methods used in their characterization, and their underlying anti-diabetic mechanisms. This may help to uncover additional structure and function relationships and to expand applications of β-glucans.
Collapse
Affiliation(s)
- Yujun Wan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;
| | - Robert G. Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Mitchell A. Sullivan
- Glycation and Diabetes Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Zhang Y, Li Y, Xia Q, Liu L, Wu Z, Pan D. Recent advances of cereal β-glucan on immunity with gut microbiota regulation functions and its intelligent gelling application. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34748438 DOI: 10.1080/10408398.2021.1995842] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
β-glucan from cereals such as wheat, barley, oats and rye are a water-soluble dietary fiber, which are composed of repeating (1→4)-β-bond β-D-glucopyranosyl units and a single (1→3)-β-D-bond separated unit. β-glucan has a series of physicochemical properties (such as viscosity, gelling properties, solubility, etc.), which can be used as a food gel and fat substitute. Its structure endows the healthy functions, including anti-oxidative stress, lowering blood glucose and serum cholesterol, regulating metabolic syndrome and exerting gut immunity via gut microbiota. Due to their unique structural properties and efficacy, cereal β-glucan are not only applied in food substrates in the food industry, but also in food coatings and packaging. This article reviewed the applications of cereal β-glucan in hydrogels, aerogels, intelligent packaging systems and targeted delivery carriers in recent years. Cereal β-glucan in edible film and gel packaging applications are becoming more diversified and intelligent in recent years. Those advances provide a potential solution based on cereal β-glucan as biodegradable substances for immune regulation delivery system and intelligent gelling material in the biomedicine field.
Collapse
Affiliation(s)
- Yunzhen Zhang
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Yueqin Li
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Qiang Xia
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Lianliang Liu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| |
Collapse
|
10
|
Furtado GP, Carli S, Meleiro LP, Salgado JCS, Ward RJ. Enhanced hydrolytic efficiency of an engineered CBM11-glucanase enzyme chimera against barley β-d-glucan extracts. Food Chem 2021; 365:130460. [PMID: 34237573 DOI: 10.1016/j.foodchem.2021.130460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 06/23/2021] [Indexed: 11/25/2022]
Abstract
The β-d-glucans are abundant cell wall polysaccharides in many cereals and contain both (1,3)- and (1,4)-bonds. The β-1,3-1,4-glucanases (EC 3.2.1.73) hydrolyze β-(1,4)-d-glucosidic linkages in glucans, and have applications in both animal and human food industries. A chimera between the family 11 carbohydrate-binding module from Ruminoclostridium (Clostridium)thermocellumcelH (RtCBM11), with the β-1,3-1,4-glucanase from Bacillus subtilis (BglS) was constructed by end-to-end fusion (RtCBM11-BglS) to evaluate the effects on the catalytic function and its application in barley β-glucan degradation for the brewing industry. The parental and chimeric BglS presented the same optimum pH (6.0) and temperature (50 °C) for maximum activity. The RtCBM11-BglS showed increased thermal stability and 30% higher hydrolytic efficiency against purified barley β-glucan, and the rate of hydrolysis of β-1,3-1,4-glucan in crude barley extracts was significantly increased. The enhanced catalytic performance of the RtCBM11-BglS may be useful for the treatment of crude barley extracts in the brewing industry.
Collapse
Affiliation(s)
| | - Sibeli Carli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Luana Parras Meleiro
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - José Carlos Santos Salgado
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
11
|
Heidary Vinche M, Khanahmadi M, Ataei SA, Danafar F. Investigation of the effects of fermented wheat bran extract containing beta‐glucanase on beta‐glucan of cereals used in animal feed. Cereal Chem 2021. [DOI: 10.1002/cche.10409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Masoumeh Heidary Vinche
- Department of Chemical Engineering Faculty of Engineering Shahid Bahonar University of Kerman Kerman Iran
| | - Morteza Khanahmadi
- Agricultural Biotechnology Research institute of Iran ‐ Isfahan Branch Agricultural Research, Education and Extension Organization (AREEO) Isfahan Iran
| | - Seyed Ahmad Ataei
- Department of Chemical Engineering Faculty of Engineering Shahid Bahonar University of Kerman Kerman Iran
| | - Firoozeh Danafar
- Department of Chemical Engineering Faculty of Engineering Shahid Bahonar University of Kerman Kerman Iran
| |
Collapse
|
12
|
Sabah S, Sharifan A, Akhonzadeh Basti A, Jannat B, TajAbadi Ebrahimi M. Use of D-optimal combined design methodology to describe the effect of extraction parameters on the production of quinoa-barley malt extract by superheated water extraction. Food Sci Nutr 2021; 9:2147-2157. [PMID: 33841831 PMCID: PMC8020935 DOI: 10.1002/fsn3.2184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/15/2022] Open
Abstract
Superheated water extraction was applied to produce quinoa-barley malt extract. D-optimal combined design was used to optimize the extraction conditions (time (min), solid-water ratio and particle size to obtain maximum protein and carbohydrate content, and minimum turbidity and pH. Quinoa flour (10%-30%), barley malt flour (70%-90%), different particle sizes (F = 420 µm, G = 710 µm), time (15-45 min), and solid-water ratio (0.1-0.2) were selected as independent variable and protein, carbohydrate, turbidity, and pH as dependent factors. Polynomials models satisfactorily fitted the experimental data with the R 2 values of .9961, .9909, .9949, and .9987, respectively. The protein and carbohydrate value was affected by superheated water extraction parameters. Our results revealed that increasing quinoa/barley malt ratio has significant effect on the turbidity and pH. The optimum extraction conditions were quinoa flour (30%), barley malt flour (70%), solid-water ratio (0.2), time (45 min), and particle size (F = 420 µm).
Collapse
Affiliation(s)
- Samireh Sabah
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Anoshe Sharifan
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | | | - Behrooz Jannat
- Halal Research Center Islamic Republic of IranTehranIran
| | | |
Collapse
|
13
|
Aparicio-García N, Martínez-Villaluenga C, Frias J, Peñas E. Production and Characterization of a Novel Gluten-Free Fermented Beverage Based on Sprouted Oat Flour. Foods 2021; 10:139. [PMID: 33440811 PMCID: PMC7828039 DOI: 10.3390/foods10010139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 12/27/2022] Open
Abstract
This study investigates the use of sprouted oat flour as a substrate to develop a novel gluten-free beverage by fermentation with a probiotic (Lactobacillus plantarum WCFS1) starter culture. Physicochemical, microbiological, nutritional and sensory properties of sprouted oat fermented beverage (SOFB) were characterized. After fermentation for 4 h, SOFB exhibited an acidity of 0.42 g lactic acid/100 mL, contents of lactic and acetic acids of 1.6 and 0.09 g/L, respectively, and high viable counts of probiotic starter culture (8.9 Log CFU/mL). Furthermore, SOFB was a good source of protein (1.7 g/100 mL), β-glucan (79 mg/100 mL), thiamine (676 μg/100 mL), riboflavin (28.1 μg/100 mL) and phenolic compounds (61.4 mg GAE/100 mL), and had a high antioxidant potential (164.3 mg TE/100 mL). Spoilage and pathogenic microorganisms were not detected in SOFB. The sensory attributes evaluated received scores higher than 6 in a 9-point hedonic scale, indicating that SOFB was well accepted by panelists. Storage of SOFB at 4 °C for 20 days maintained L. plantarum viability and a good microbial quality and did not substantially affect β-glucan content. SOFB fulfils current consumer demands regarding natural and wholesome plant-based foods.
Collapse
Affiliation(s)
| | | | | | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (N.A.-G.); (C.M.-V.); (J.F.)
| |
Collapse
|
14
|
Schmidt M. Cereal beta-glucans: an underutilized health endorsing food ingredient. Crit Rev Food Sci Nutr 2020; 62:3281-3300. [DOI: 10.1080/10408398.2020.1864619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marcus Schmidt
- Department of Safety and Quality of Cereals, Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food, Detmold, Germany
| |
Collapse
|
15
|
Affiliation(s)
| | - A. Spiro
- British Nutrition Foundation London UK
| |
Collapse
|
16
|
Identification and characterization of mRNAs and lncRNAs of a barley shrunken endosperm mutant using RNA-seq. Genetica 2020; 148:55-68. [PMID: 32078720 DOI: 10.1007/s10709-020-00087-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/13/2020] [Indexed: 01/03/2023]
Abstract
Barley shrunken endosperm mutants have been extensively reported. However, knowledge of the underlying molecular mechanisms of these mutants remains limited. Here, a pair of near isogenic lines (normal endosperm: Bowman and shrunken endosperm: sex1) was subjected to transcriptome analysis to identify mRNAs and lncRNAs related to endosperm development to further dissect its mechanism of molecular regulation. A total of 2123 (1140 up- and 983 down-regulated) unique differentially expressed genes (DEGs) were detected. Functional analyses showed that these DEGs were mainly involved in starch and sucrose metabolism, biosynthesis of secondary metabolites, and plant hormone signal transduction. A total of 343 unique target genes were identified for 57 differentially expressed lncRNAs (DE lncRNAs). These DE lncRNAs were mainly involved in glycerophospholipid metabolism, starch and sucrose metabolism, hormone signal transduction, and stress response. In addition, key lncRNAs were identified by constructing a co-expression network of the target genes of DE lncRNAs. Transcriptome results suggested that mRNA and lncRNA played a critical role in endosperm development. The shrunken endosperm in barley seems to be closely related to plant hormone signal transduction, starch and sucrose metabolism, and cell apoptosis. This study provides a foundation for fine mapping, elucidates the molecular mechanism of shrunken endosperm mutants, and also provides a reference for further studies of lncRNAs during the grain development of plants.
Collapse
|
17
|
Rodrigues Barbosa J, Dos Santos Freitas MM, da Silva Martins LH, de Carvalho RN. Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydr Polym 2019; 229:115550. [PMID: 31826512 DOI: 10.1016/j.carbpol.2019.115550] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
The biodiversity of mushrooms Pleurotus spp. is impressive due to its complexity and diversity related to the composition of chemical structures such as polysaccharides, glycoproteins and secondary metabolites such as alkaloids, flavonoids and betalains. Recent studies of polysaccharides and their structural elucidation have helped to direct research and development of technologies related to pharmacological action, production of bioactive foods and application of new, more sophisticated extraction tools. The diversity of bioactivities related to these biopolymers, their mechanisms and routes of action are constant focus of researches. The elucidation of bioactivities has helped to formulate new vaccines and targeted drugs. In this context, in terms of polysaccharides and the diversity of mushrooms Pleurotus spp., this review seeks to revisit the genus, making an updated approach on the recent discoveries of polysaccharides, new extraction techniques and bioactivities, emphasising on their mechanisms and routes in order to update the reader on the recent technologies related to these polymers.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Maurício Madson Dos Santos Freitas
- LAPOA/FEA (Laboratory of Products of Animal Origin/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Luiza Helena da Silva Martins
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|