1
|
Zhou X, Wang J, Shao G, Chang X, Liu Y, Xiang T, Zhu Q, Ren A, Jiang A, He Q. Bidirectional Solid-State Fermentation of Highland Barley by Edible Fungi to Improve Its Functional Components, Antioxidant Activity and Texture Characteristics. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:308-315. [PMID: 38639852 DOI: 10.1007/s11130-024-01166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/20/2024]
Abstract
In food industry, the characteristics of food substrate could be improved through its bidirectional solid-state fermentation (BSF) by fungi, because the functional components were produced during BSF. Six edible fungi were selected for BSF to study their effects on highland barley properties, such as functional components, antioxidant activity, and texture characteristics. After BSF, the triterpenes content in Ganoderma lucidum and Ganoderma leucocontextum samples increased by 76.57 and 205.98%, respectively, and the flavonoids content increased by 62.40% (Phellinus igniarius). Protein content in all tests increased significantly, with a maximal increase of 406.11% (P. igniarius). Proportion of indispensable amino acids increased significantly, with the maximum increase of 28.22%. Lysine content increased largest by 437.34% to 3.310 mg/g (Flammulina velutipes). For antioxidant activity, ABTS radical scavenging activity showed the maximal improvement, with an increase of 1268.95%. Low-field NMR results indicated a changed water status of highland barley after fermentation, which could result in changes in texture characteristics of highland barley. Texture analysis showed that the hardness and chewiness of the fermented product decreased markedly especially in Ganoderma lucidum sample with a decrease of 77.96% and 58.60%, respectively. The decrease indicated a significant improvement in the taste of highland barley. The results showed that BSF is an effective technology to increase the quality of highland barley and provide a new direction for the production of functional foods.
Collapse
Affiliation(s)
- Xiaolin Zhou
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Jieying Wang
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Gaige Shao
- Xi'an Agricultural Technology Extension Center, Xi'an, 710007, Shaanxi, People's Republic of China
| | - Xi Chang
- Department of Plant Science and Technology, Tibet Agriculture & Animal Husbandry University, Nyingchi, 860000, Tibet, People's Republic of China
| | - Yueqian Liu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Taobo Xiang
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Quanyu Zhu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Ang Ren
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Ailiang Jiang
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China.
| | - Qin He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
2
|
Xie J, Hong Y, Gu Z, Cheng L, Li Z, Li C, Ban X. Highland Barley Starch: Structures, Properties, and Applications. Foods 2023; 12:foods12020387. [PMID: 36673478 PMCID: PMC9857740 DOI: 10.3390/foods12020387] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Highland barley (HB) is a nutritious crop with excellent health benefits, and shows promise as an economically important crop with diverse applications. Starch is the main component of HB and has great application potential owing to its unique structural and functional properties. This review details the latest status of research on the isolation, chemical composition, structure, properties, and applications of highland barley starch (HBS). Suggestions regarding how to better comprehend and utilize starches are proposed. The amylopectin content of HBS ranged from 74% to 78%, and can reach 100% in some varieties. Milling and air classification of barley, followed by wet extraction, can yield high-purity HBS. The surface of HBS granules is smooth, and most are oval and disc-shaped. Normal, waxy, and high-amylose HBS have an A-type crystalline. Due to its superb freeze-thaw stability, outstanding stability, and high solubility, HBS is widely used in the food and non-food industries. The digestibility of starch in different HB whole grain products varies widely. Therefore, the suitable HB variety can be selected to achieve the desired glycemic index. Further physicochemical modifications can be applied to expand the variability in starch structures and properties. The findings provide a thorough reference for future research on the utilization of HBS.
Collapse
Affiliation(s)
- Jingjing Xie
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
- Correspondence: ; Tel.: +86-510-85329237
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Effect of pearling on composition, microstructure, water migration and cooking quality of highland barley (Hordeum vulgare var. Coeleste Linnaeus). Food Chem 2022; 395:133581. [DOI: 10.1016/j.foodchem.2022.133581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022]
|
6
|
Acar O, Izydorczyk M, McMillan T, Yazici M, Ozdemir B, Cakmak I, Koksel H. An investigation on minerals, arabinoxylans and other fibres of biofortified hull-less barley fractions obtained by two milling systems. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|