1
|
Jindal A, Patil N, Bains A, Sridhar K, Stephen Inbaraj B, Tripathi M, Chawla P, Sharma M. Recent Trends in Cereal- and Legume-Based Protein-Mineral Complexes: Formulation Methods, Toxicity, and Food Applications. Foods 2023; 12:3898. [PMID: 37959017 PMCID: PMC10649166 DOI: 10.3390/foods12213898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Minerals play an important role in maintaining human health as the deficiency of these minerals can lead to serious health issues. To address these deficiencies, current research efforts are actively investigating the utilization of protein-mineral complexes as eco-friendly, non-hazardous, suitable mineral fortifiers, characterized by minimal toxicity, for incorporation into food products. Thus, we reviewed the current challenges in incorporating the cereal-legume protein-inorganic minerals complexes' structure, binding properties, and toxicity during fortification on human health. Moreover, we further reviewed the development of protein-mineral complexes, characterization, and their food applications. The use of inorganic minerals has been associated with several toxic effects, leading to tissue-level toxicity. Cereal- and legume-based protein-mineral complexes effectively reduced the toxicity, improved bone mineral density, and has antioxidant properties. The characterization techniques provided a better understanding of the binding efficiency of cereal- and legume-based protein-mineral complexes. Overall, understanding the mechanism and binding efficiency underlying protein-mineral complex formation provided a novel insight into the design of therapeutic strategies for mineral-related diseases with minimal toxicity.
Collapse
Affiliation(s)
- Aprajita Jindal
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (A.J.); (N.P.)
| | - Nikhil Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (A.J.); (N.P.)
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore 641021, India
| | | | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (A.J.); (N.P.)
| | | |
Collapse
|
2
|
Xie H, Ying R, Tang Z, Wu C, Huang M. Effects of cereal grain cell wall composition and structure on starch digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37185988 DOI: 10.1002/jsfa.12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Wheat is an important food crop, and its characteristics vary depending on the region of cultivation; different environments have varying effects on the composition of the grains. We previously reported the effects of environmental factors on wheat grain cell wall composition and structure. METHODS The variations in the structure of aleurone cell walls between different wheat samples were examined to determine the effects of aleurone cell walls on grain starch digestion properties. Ten different varieties of wheat grains with different aleurone cell wall structure and composition constituted a simple research system used to study their effect on the starch digestion of bread. RESULTS The aleurone cell wall thickness ranged from 3.05 μm to 4.67 μm, and the arabinose to xylose ration of water-extractable arabinoxylan was 0.79-0.97. With the increase in arabinoxylans content or cell wall thickness, the total digestibility of starch within the bread decreased; this phenomenon may be related to the changes in the interaction between polysaccharides and starch granules in this process. CONCLUSION Our study showed that the wheat cell wall structure has a great impact on starch hydrolysis, indicating that the change in the digestibility of starch in flour and bread may be due to changes in the cell wall structure leading to different combinations, thus affecting digestibility. The present study showed that the cell wall combines the starch granules during the bread-making process; thus, the diffusion of enzymes through the cell wall was hindered. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hui Xie
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Ruifeng Ying
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenxing Tang
- College of Culinary Art, Tourism College of Zhejiang, Hangzhou, Zhejiang, China, 311231
| | - Caie Wu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Meigui Huang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
3
|
Zeng S, Ying R, Gao X, Huang M. Characteristics of the composite film of arabinoxylan and starch granules in simulated wheat endosperm. Int J Biol Macromol 2023; 233:123416. [PMID: 36709817 DOI: 10.1016/j.ijbiomac.2023.123416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
We found that cell wall components of wheat grains differed significantly across different grain-filling stages; specifically, we observed significant differences in water content and water migration rate (p < 0.05). A composite film of arabinoxylan and starch granules was prepared to simulate wheat endosperm structure. Scanning electron microscopy (SEM), X-ray diffractometer (XRD), and thermogravimetric analysis (TGA) showed that the crystallinity and structural stability of the film increased with increasing starch content. Water diffusion experiments of the films revealed that the water diffusion rate gradually decreased with increasing starch content. Therefore, the water mobility of the starch endosperm was lower than that of the aleurone layer. These findings provide a basis for further studies in the context of wheat grain water regulation.
Collapse
Affiliation(s)
- Shiqi Zeng
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ruifeng Ying
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaoquan Gao
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meigui Huang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Zhao X, Wei X, Wang H, Liu X, Zhang Y, Zhang H. Discrepancy of Effective Water Diffusivities Determined from Dynamic Vapor Sorption Measurements with Different Relative Humidity Step Sizes: Observations from Cereal Materials. Foods 2023; 12:foods12071470. [PMID: 37048291 PMCID: PMC10108134 DOI: 10.3390/foods12071470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Water diffusivity, a critical parameter for cereal processing design and quality optimization, is usually concentration-dependent. dynamic vapor sorption (DVS) system provides an approach to establishing the relationship between water concentration and diffusivity. However, the usual relative humidity (RH) jump during practical sorption processes is usually greater than that adopted in DVS measurements. Water vapor sorption kinetics of glutinous rice grains, glutinous rice flour and wheat flour dough films were measured using the DVS system to verify if varying RH step sizes can obtain identical diffusivities within the same range. The effective diffusivities were determined according to Fick’s second law. The results revealed that increasing RH step size led to a higher estimated diffusivity, regardless of whether the water concentration gradient or potential chemical gradient was considered a driving force for water diffusion. This finding was further confirmed by a linear RH scanning DVS measurement. The water concentration-dependent diffusivity obtained from a multi-step DVS measurement, according to Fick’s second law, will overestimate the required time for practical cereal drying or adsorption. Thus, this paradoxical discrepancy needs a new mass transfer mechanism to be explained.
Collapse
|
5
|
Ying R, Zhou T, Xie H, Huang M. Synergistic effect of arabinoxylan and (1,3)(1,4)-β-glucan reduces the starch hydrolysis rate in wheat flour. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
6
|
Piro MC, Muylle H, Haesaert G. Exploiting Rye in Wheat Quality Breeding: The Case of Arabinoxylan Content. PLANTS (BASEL, SWITZERLAND) 2023; 12:737. [PMID: 36840085 PMCID: PMC9965444 DOI: 10.3390/plants12040737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Rye (Secale cereale subsp. cereale L.) has long been exploited as a valuable alternative genetic resource in wheat (Triticum aestivum L.) breeding. Indeed, the introgression of rye genetic material led to significant breakthroughs in the improvement of disease and pest resistance of wheat, as well as a few agronomic traits. While such traits remain a high priority in cereal breeding, nutritional aspects of grain crops are coming under the spotlight as consumers become more conscious about their dietary choices and the food industry strives to offer food options that meet their demands. To address this new challenge, wheat breeding can once again turn to rye to look for additional genetic variation. A nutritional aspect that can potentially greatly benefit from the introgression of rye genetic material is the dietary fibre content of flour. In fact, rye is richer in dietary fibre than wheat, especially in terms of arabinoxylan content. Arabinoxylan is a major dietary fibre component in wheat and rye endosperm flours, and it is associated with a variety of health benefits, including normalisation of glycaemic levels and promotion of the gut microbiota. Thus, it is a valuable addition to the human diet, and it can represent a novel target for wheat-rye introgression breeding.
Collapse
Affiliation(s)
- Maria Chiara Piro
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, 9090 Melle, Belgium
| | - Hilde Muylle
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, 9090 Melle, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Effect of pearling on composition, microstructure, water migration and cooking quality of highland barley (Hordeum vulgare var. Coeleste Linnaeus). Food Chem 2022; 395:133581. [DOI: 10.1016/j.foodchem.2022.133581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022]
|
8
|
Riley IM, Nivelle MA, Ooms N, Delcour JA. The use of time domain 1 H NMR to study proton dynamics in starch-rich foods: A review. Compr Rev Food Sci Food Saf 2022; 21:4738-4775. [PMID: 36124883 DOI: 10.1111/1541-4337.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/30/2022] [Accepted: 07/31/2022] [Indexed: 01/28/2023]
Abstract
Starch is a major contributor to the carbohydrate portion of our diet. When it is present with water, it undergoes several transformations during heating and/or cooling making it an essential structure-forming component in starch-rich food systems (e.g., bread and cake). Time domain proton nuclear magnetic resonance (TD 1 H NMR) is a useful technique to study starch-water interactions by evaluation of molecular mobility and water distribution. The data obtained correspond to changes in starch structure and the state of water during or resulting from processing. When this technique was first applied to starch(-rich) foods, significant challenges were encountered during data interpretation of complex food systems (e.g., cake or biscuit) due to the presence of multiple constituents (proteins, carbohydrates, lipids, etc.). This article discusses the principles of TD 1 H NMR and the tools applied that improved characterization and interpretation of TD NMR data. More in particular, the major differences in proton distribution of various dough and cooked/baked food systems are examined. The application of variable-temperature TD 1 H NMR is also discussed as it demonstrates exceptional ability to elucidate the molecular dynamics of starch transitions (e.g., gelatinization, gelation) in dough/batter systems during heating/cooling. In conclusion, TD NMR is considered a valuable tool to understand the behavior of starch and water that relate to the characteristics and/or quality of starchy food products. Such insights are crucial for food product optimization and development in response to the needs of the food industry.
Collapse
Affiliation(s)
- Isabella M Riley
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Mieke A Nivelle
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Nand Ooms
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
- Biscuiterie Thijs, Herentals, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Fan X, Liu X, Feng B, Zhou Q, Deng G, Long H, Cao J, Guo S, Ji G, Xu Z, Wang T. Construction of a novel Wheat 55 K SNP array-derived genetic map and its utilization in QTL mapping for grain yield and quality related traits. Front Genet 2022; 13:978880. [PMID: 36092872 PMCID: PMC9462458 DOI: 10.3389/fgene.2022.978880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Wheat is one of the most important staple crops for supplying nutrition and energy to people world. A new genetic map based on the Wheat 55 K SNP array was constructed using recombinant inbred lines derived from a cross between Zhongkemai138 and Kechengmai2 to explore the genetic foundation for wheat grain features. This new map covered 2,155.72 cM across the 21 wheat chromosomes with 11,455 markers. And 2,846 specific markers for this genetic map and 148 coincident markers among different maps were documented, which was helpful for improving and updating wheat genetic and genomic information. Using this map, a total of 68 additive QTLs and 82 pairs of epistatic QTLs were detected for grain features including yield, nutrient composition, and quality-related traits by QTLNetwork 2.1 and IciMapping 4.1 software. Fourteen additive QTLs and one pair of epistatic QTLs could be detected by both software programs and thus regarded as stable QTLs here, all of which explained higher phenotypic variance and thus could be utilized for wheat grain improvement. Additionally, thirteen additive QTLs were clustered into three genomic intervals (C4D.2, C5D, and C6D2), each of which had at least two stable QTLs. Among them, C4D.2 and C5D have been attributed to the famous dwarfing gene Rht2 and the hardness locus Pina, respectively, while endowed with main effects on eight grain yield/quality related traits and epistatically interacted with each other to control moisture content, indicating that the correlation of involved traits was supported by the pleotropic of individual genes but also regulated by the gene interaction networks. Additionally, the stable additive effect of C6D2 (QMc.cib-6D2 and QTw.cib-6D2) on moisture content was also highlighted, potentially affected by a novel locus, and validated by its flanking Kompetitive Allele-Specific PCR marker, and TraesCS6D02G109500, encoding aleurone layer morphogenesis protein, was deduced to be one of the candidate genes for this locus. This result observed at the QTL level the possible contribution of grain water content to the balances among yield, nutrients, and quality properties and reported a possible new locus controlling grain moisture content as well as its linked molecular marker for further grain feature improvement.
Collapse
Affiliation(s)
- Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaofeng Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jun Cao
- Yibin University, Yibin, China
| | - Shaodan Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangsi Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Zhibin Xu, ; Tao Wang,
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zhibin Xu, ; Tao Wang,
| |
Collapse
|
10
|
Xie H, Ying R, Huang M. Effect of arabinoxylans with different molecular weights on the gelling properties of wheat starch. Int J Biol Macromol 2022; 209:1676-1684. [PMID: 35487381 DOI: 10.1016/j.ijbiomac.2022.04.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
The addition of arabinoxylans (AXs) is important for improving the structure of wheat starch-AX gels, which further influences the functionality of starch-based products. The properties of wheat starch-AX gels (including rheology, texture, water distribution, microstructure, and degree of crystallinity) were studied. AX with high molecular weight (Mw) significantly decreased the swelling and leached amylose, while increasing the solubility of amylose. The AX with high Mw also clearly reduced the apparent viscosity, elasticity, and viscosity of wheat starch-AX gels. The Mw of AX was positively correlated to the hardness of the gels and negatively correlated to adhesiveness to a certain extent. The spin-spin relaxation time of the gels increased with an increase in Mw, which resulted in more free water. Scanning electron microscopy showed that AX with high Mw clearly reduced the degree of starch gelatinization while forming a fragile gel structure. In summary, AX with high Mw from natural wheat grains can effectively affect wheat starch gelling properties. These results may be useful for the application of natural AXs in wheat starch-based functional foods.
Collapse
Affiliation(s)
- Hui Xie
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ruifeng Ying
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Meigui Huang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Ying R, Li T, Wu C, Huang M. Preparation and characterisation of arabinoxylan and (1,3)(1,4)‐β‐glucan alternating multilayer edible films simulated those of wheat grain aleurone cell wall. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruifeng Ying
- College of Light Industry and Food Engineering Nanjing Forestry University Nanjing210037China
| | - Tong Li
- College of Light Industry and Food Engineering Nanjing Forestry University Nanjing210037China
| | - Caie Wu
- College of Light Industry and Food Engineering Nanjing Forestry University Nanjing210037China
| | - Meigui Huang
- College of Light Industry and Food Engineering Nanjing Forestry University Nanjing210037China
| |
Collapse
|
12
|
Meziani S, Nadaud I, Tasleem-Tahir A, Nurit E, Benguella R, Branlard G. Wheat aleurone layer: A site enriched with nutrients and bioactive molecules with potential nutritional opportunities for breeding. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Chateigner-Boutin AL, Alvarado C, Devaux MF, Durand S, Foucat L, Geairon A, Grélard F, Jamme F, Rogniaux H, Saulnier L, Guillon F. The endosperm cavity of wheat grains contains a highly hydrated gel of arabinoxylan. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110845. [PMID: 33775355 DOI: 10.1016/j.plantsci.2021.110845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Cereal grains provide a substantial part of the calories for humans and animals. The main quality determinants of grains are polysaccharides (mainly starch but also dietary fibers such as arabinoxylans, mixed-linkage glucans) and proteins synthesized and accumulated during grain development in a specialized storage tissue: the endosperm. In this study, the composition of a structure localized at the interface of the vascular tissues of the maternal plant and the seed endosperm was investigated. This structure is contained in the endosperm cavity where water and nutrients are transferred to support grain filling. While studying the wheat grain development, the cavity content was found to autofluoresce under UV light excitation. Combining multispectral analysis, Fourier-Transform infrared spectroscopy, immunolabeling and laser-dissection coupled with wet chemistry, we identified in the cavity arabinoxylans and hydroxycinnamic acids. The cavity content forms a "gel" in the developing grain, which persists in dry mature grain and during subsequent imbibition. Microscopic magnetic resonance imaging revealed that the gel is highly hydrated. Our results suggest that arabinoxylans are synthesized by the nucellar epidermis, released in the cavity where they form a highly hydrated gel which might contribute to regulate grain hydration.
Collapse
Affiliation(s)
| | | | | | | | - Loïc Foucat
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, BIBS Facility, F-44316, Nantes, France
| | | | - Florent Grélard
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, BIBS Facility, F-44316, Nantes, France
| | - Frédéric Jamme
- DISCO Beamline, SOLEIL Synchrotron, 91192, Gif-sur-Yvette, France
| | - Hélène Rogniaux
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, BIBS Facility, F-44316, Nantes, France
| | | | | |
Collapse
|
14
|
Effects of lamellar organization and arabinoxylan substitution rate on the properties of films simulating wheat grain aleurone cell wall. Carbohydr Polym 2021; 270:117819. [PMID: 34364586 DOI: 10.1016/j.carbpol.2021.117819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/20/2022]
Abstract
Herein, we evaluated the properties of alternate arabinoxylan (AX)/(1→3) (1→4)-β-D-glucan (BG) multilayer films. AX was extracted from wheat at three growth stages and single-component and alternate overlapping multilayer films were prepared. The physical properties, water diffusion rate, and water mobility of multilayer films during water absorption and desorption were studied. There were significant differences in the AX content and arabinose-to-xylose ratio at different growth stages. The LAX/BG multilayer films showed excellent thermal stability and mechanical properties with an increase in the relative humidity. The AX multilayer films with a low substitution rate showed a better water-binding capacity, whereas water molecules in films with a high substitution rate showed higher mobility. Therefore, a low substitution rate AX and AX/BG composite structure can improve the thermodynamic properties of multilayer films, but limit water mobility. We provide new insights on the physicochemical properties and water-regulation effects of wheat cell wall.
Collapse
|