1
|
Qian X, Sun B, Zhou M, Ma S, Wang X. Understanding the dual impact of oat protein on the structure and digestion of oat starch at pre- and post-retrogradation stages. Int J Biol Macromol 2024; 288:138762. [PMID: 39674467 DOI: 10.1016/j.ijbiomac.2024.138762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Although extensive research has been conducted on the effects of protein-starch interaction on the gelatinization and microstructure of starch gels, the starch retrogradation process and protein component has been overlooked. Moreover, the dual regulatory effects of oat protein on starch gel microstructure and starch digestibility pre-and post-retrogradation still remains largely unexplored. In this study, the gelation behaviors, structure, and digestibility of oat protein-oat starch mixtures pre- and post-retrogradation were determined. The oat protein-starch samples exhibited lower setback values (314 cP) and higher relaxation peak time T23 (363.62 ms) compared to the oat starch samples (1994 cP and 160.51 ms), indicating that oat protein effectively delayed the short-term retrogradation and weakened the water-binding capacity of starch gel. Morphological and rheological analyses revealed that prior to retrogradation, oat protein promoted the formation of a looser network structure with weak shear resistance and consistency, while, after 7 d of retrogradation, an appropriate protein content (<30 %) facilitated the formation of an orderly and uniform honeycomb porous gel structure. Furthermore, oat protein increased the resistant starch content (RS) from 18.16 % to 32.66 % before retrogradation. After retrogradation, oat protein slowed down the increase in RS content by inhibiting the formation of starch crystal structure. Noteworthy, different oat protein components play various roles in starch gelatinization and retrogradation process.
Collapse
Affiliation(s)
- Xiaojie Qian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China.
| | - Menglu Zhou
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
2
|
Ge F, Sun Y, Yang C, Cheng W, Wang Z, Xia X, Wu D, Tang X. Exploring the relationship between starch structure and physicochemical properties: The impact of extrusion on highland barley flour. Food Res Int 2024; 183:114226. [PMID: 38760145 DOI: 10.1016/j.foodres.2024.114226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 05/19/2024]
Abstract
Highland barley (HB) is an intriguing plateau cereal crop with high nutrition and health benefits. However, abundant dietary fiber and deficient gluten pose challenges to the processing and taste of whole HB products. Extrusion technology has been proved to be effective in overcoming these hurdles, but the association between the structure and physicochemical properties during extrusion remains inadequately unexplored. Therefore, this study aims to comprehensively understand the impact of extrusion conditions on the physicochemical properties of HB flour (HBF) and the multi-scale structure of starch. Results indicated that the nutritional value of HBF were significantly increased (soluble dietary fiber and β-glucan increased by 24.05%, 19.85% respectively) after extrusion. Typical underlying mechanisms based on starch structure were established. High temperature facilitated starch gelatinization, resulting in double helices unwinding, amylose leaching, and starch-lipid complexes forming. These alterations enhanced the water absorption capacity, cold thickening ability, and peak viscosity of HBF. More V-type complexes impeded amylose rearrangement, thus enhancing resistance to retrogradation and thermal stability. Extrusion at high temperature and moisture exhibited similarities to hydrothermal treatment, partly promoting amylose rearrangement and enhancing HBF peak viscosity. Conversely, under low temperature and high moisture, well-swelled starch granules were easily broken into shorter branch-chains by higher shear force, which enhanced the instant solubility and retrogradation resistance of HBF as well as reduced its pasting viscosity and the capacity to form gel networks. Importantly, starch degradation products during this condition were experimentally confirmed from various aspects. This study provided some reference for profiting from extrusion for further development of HB functional food and "clean label" food additives.
Collapse
Affiliation(s)
- Fei Ge
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yue Sun
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chenxi Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Weiwei Cheng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xifeng Xia
- Center of Analytical Facilities of Nanjing University of Science and Technology, Nanjing 210094, China
| | - Di Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
3
|
Zhang Y, Sun M, Huo R, Gu Q, Miao Y, Zhang M. The effect of stir-frying on the aging of oat flour during storage: A study based on lipidomics. Food Sci Nutr 2024; 12:3188-3198. [PMID: 38726442 PMCID: PMC11077182 DOI: 10.1002/fsn3.3985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 05/12/2024] Open
Abstract
In this study, we used the LC-ESI-MS/MS technique to elucidate the effects of stir-frying on the lipidomics of oat flour before and after storage. We detected 1540 lipids in 54 subclasses; triglycerides were the most abundant, followed by diacylglycerol, ceramide (Cer), digalactosyldiacylglycerol, cardiolipin, and phosphatidylcholine. Principal component analysis and orthogonal least squares discriminant analysis analyses showed that oat flour lipids were significantly different before and after storage in stir-fried oat flour and raw oat flour. After oat flour was stir-fried, most of the lipid metabolites in it were significantly downregulated, and the changes in lipids during storage were reduced. Sphingolipid metabolism and ether lipid metabolism were the key metabolic pathways, and Cer, PC, and lyso-phosphatidylcholine were the key lipid metabolites identified in the related metabolic pathways during oat flour storage. Frying inhibits lipid metabolic pathways during storage of oat flour, thereby improving lipid stability and quality during storage. This study laid the foundation for further investigating quality control and the mechanism of changes in lipids during the storage of oat flour.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Food Science and EngineeringInner Mongolia Agriculture UniversityHohhotChina
| | - Minjun Sun
- College of Food Science and EngineeringInner Mongolia Agriculture UniversityHohhotChina
| | - Rui Huo
- College of Food Science and EngineeringInner Mongolia Agriculture UniversityHohhotChina
| | - Qixin Gu
- College of Food Science and EngineeringInner Mongolia Agriculture UniversityHohhotChina
| | - Ying Miao
- College of Food Science and EngineeringInner Mongolia Agriculture UniversityHohhotChina
| | - Meili Zhang
- College of Food Science and EngineeringInner Mongolia Agriculture UniversityHohhotChina
| |
Collapse
|
4
|
Jiang W, Yang X, Li L. Flavor of extruded meat analogs: A review on composition, influencing factors, and analytical techniques. Curr Res Food Sci 2024; 8:100747. [PMID: 38708099 PMCID: PMC11066600 DOI: 10.1016/j.crfs.2024.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024] Open
Abstract
Meat analogs are anticipated to alleviate environmental and animal welfare concerns as the demand for meat rises. High moisture extrusion is commonly employed to produce meat analogs, and its flavor could influence consumers' choice. To improve the development and market demand of extruded meat analogs, flavor precursors and natural spices have been used in high moisture extrusion process to directly improve the flavor profile of extruded meat analogs. Although there have been many studies on the flavor of high moisture extruded meat analogs, flavor composition and influencing factors have not been summarized. Thus, this review systematically provides the main pleasant and unpleasant flavor-active substances with 79 compounds, as well as descriptive the influence of flavor-active compounds, chemical reactions (such as lipid oxidation and the Maillard reaction), and fiber structure formation (based on extrusion process, extrusion parameters, and raw materials) on flavor of extruded meat analogs. Flavor evaluation of extruded meat analogs will toward multiple assessment methods to fully and directly characterize the flavor of extruded meat analogs, especially machine learning techniques may help to predict and regulate the flavor characteristics of extruded meat analogs.
Collapse
Affiliation(s)
- Wanrong Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
5
|
Yang X, Zhang W, Lan Y, Zhang J, Zheng W, Wu J, Zhang C, Dang B. An investigation into the effects of various processing methods on the characteristic compounds of highland barley using a widely targeted metabolomics approach. Food Res Int 2024; 180:114061. [PMID: 38395553 DOI: 10.1016/j.foodres.2024.114061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
This study explored the influence of diverse processing methods (cooking (CO), extrusion puffing (EX), and steam explosion puffing (SE), stir-frying (SF) and fermentation (FE)) on highland barley (Qingke) chemical composition using UHPLC-MS/MS based widely targeted metabolomics. Overall, 827 metabolites were identified and categorized into 16 classes, encompassing secondary metabolites, amino acids, nucleotides, lipids, etc. There 43, 85, 131, 51 and 98 differential metabolites were respectively selected from five comparative groups (raw materials (RM) vs CO/EX/SE/SF/FE), mainly involved in amino acids, nucleotides, flavonoids, and alkaloids. Compared to other treated groups, FE group possessed the higher content of crude protein (15.12 g/100 g DW), and the relative levels of free amino acids (1.32 %), key polyphenols and arachidonic acid (0.01 %). EX group had the higher content of anthocyanins (4.22 mg/100 g DW), and the relative levels of free amino acids (2.02 %) and key polyphenols. SE group showed the higher relative levels of phenolic acids (0.14 %), flavonoids (0.20 %) and alkaloids (1.17 %), but the lowest free amino acids (0.75 %). Different processing methods all decreased Qingke's antioxidant capacity, with the iron reduction capacity (988.93 μmol/100 g DW) in SE group was the lowest. On the whole, FE and EX were alleged in improving Qingke's nutritional value. CO and SF were also suitable for Qingke processing since fewer differential metabolites were identified in CO vs RM and SF vs RM groups. Differential metabolites were connected to 14 metabolic pathways, with alanine, aspartate, and glutamate metabolism being central. This study contributed theoretical groundwork for the scientific processing and quality control of Qingke products.
Collapse
Affiliation(s)
- Xijuan Yang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Wengang Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Yongli Lan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Jie Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Wancai Zheng
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Jing Wu
- Qinghai Tianyoude Technology Investment Management Group Co., Ltd., Xining 810016, China
| | - Chengping Zhang
- Qinghai Tianyoude Technology Investment Management Group Co., Ltd., Xining 810016, China
| | - Bin Dang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China.
| |
Collapse
|
6
|
Tang Y, Xu L, Yu Z, Zhang S, Nie E, Wang H, Yang Z. Influence of 10 MeV electron beam irradiation on the lipid stability of oat and barley during storage. Food Chem X 2023; 20:100904. [PMID: 37817988 PMCID: PMC10560779 DOI: 10.1016/j.fochx.2023.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
This study investigated the effect of electron beam irradiation (EBI) on the lipid stability of oat and barley during long-term storage. Results showed that the initial free fatty acid content in oat was higher than that in barley. This may mean that lipid hydrolysis started under the function of lipase when oat and barley were milled into flours. Both storage and EBI factors influenced lipid-degrading enzyme activity and promoted lipid oxidation in oat and barley. However, it seemed that storage had higher impacts because the DPPH scavenging activity decreased greatly, and the contents of both malondialdehyde and volatile lipid oxidation products increased in all samples. Thus, the antioxidant capacity and level of lipid oxidation after EBI treatment should be considered when producing oat and barley foods. Overall, this study shows the high potential of EBI for use as a non-thermal technique in stabilising the storage quality of oat and barley.
Collapse
Affiliation(s)
- Yue Tang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Xu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiyang Yu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sufen Zhang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Enguang Nie
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Wang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Yang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Liu Y, Meng N, Sun Y, Wang L, Liu M, Qiao C, Tan B. Three thermal treated methods improve physicochemical and functional properties of wheat bran-germ and the bran-germ containing products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4317-4328. [PMID: 36762767 DOI: 10.1002/jsfa.12492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/29/2022] [Accepted: 02/10/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND To fully investigate the effect of different stabilization methods on WBG in the same environment, we studied the effect of microwaving, baking, and extrusion on the nutritional, physicochemical, and processability properties of WBG and whole wheat bran-germ noodle (WBGN). Principal component analysis was used to comprehensively evaluate the qualities of WBG and WBGN. Machine learning-based research was conducted to predict the quality of WBGN based on the features of WBG. RESULTS The results showed that three methods improved antioxidant ability, bound flavonoids, bound and total phenolics, and the processing properties in WBG (P < 0.05). Extruded-WBG showed a lower polyphenol oxidase activity, lipase activity (35.02 ± 2.02 U and 20.29 ± 0.47 mg g-1 ) and particle size (54.08 ± 0.38 μm), and higher water hold capacity (2.60 ± 0.68%) and bound phenolic levels. The enhanced quantity of bound polyphenols had a major role in the increased antioxidant potential of WBGN. Extruded-WBGN showed higher antioxidant ability for 2,2-diphenyl-1-picrylhydrazyl (171.28 ± 3.16 μmol Trolox eq kg-1 ). The extruded-WBGN had high concentrations of WBG aroma compounds, and low contents of bitterness and raw bran-germ flavor compounds. Next, the enzymatic activity, powder properties, color, and antioxidant capacity of WBG were further utilized to predict the polyphenolic, flavonoids, flavor compounds, and antioxidant capacities of WBGN, where the R2 value of the model exceeded 0.90. The best comprehensive quality modification method of the WBG and WBGN was extrusion, followed by baking and microwaving. CONCLUSION The present study shows that extrusion is a promising way to improve WBG into a nutritious and flavorful cereal food ingredient. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanxiang Liu
- College of Engineering, Northeast Agricultural University, Harbin, China
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Ning Meng
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yong Sun
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Liping Wang
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Ming Liu
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Congcong Qiao
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Bin Tan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
8
|
Song J, Tang Y. Effect of extrusion temperature on characteristic amino acids, fatty acids, organic acids, and phenolics of white quinoa based on metabolomics. Food Res Int 2023; 169:112761. [DOI: 10.1016/j.foodres.2023.112761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
|
9
|
Yang Z, Xie C, Bao Y, Liu F, Wang H, Wang Y. Oat: Current state and challenges in plant-based food applications. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
10
|
Zhang Y, Yang T, Chen C, Wang J, Qiang S, Zhou J, Li S, Chen Y. Effects of high temperature, high humidity, and cold storage on structure and qualities of whole oat flour noodles during processing. J Food Sci 2023; 88:83-93. [PMID: 36510381 DOI: 10.1111/1750-3841.16405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022]
Abstract
Gelation and structure of oat starch significantly affect qualities of whole oat flour noodles. During extrusion, the structure of noodles is loose, resulting in high cooking loss and poor texture. Therefore, oat noodles were treated with high temperature, high humidity (HTH), and cold storage (CS), and their structure and qualities were analyzed. The results showed that compared with CS, HTH could reduce the cooking loss of noodles from 10.12% to 6.13%, increase the hardness (65.59 g) and chewiness (20.67) of noodles, and effectively improve the sensory quality of noodles. The change in texture and sensory of noodles was due to HTH by accelerating the retrogradation of starch in noodles, promoting the cross-linking of starch molecules to form an ordered structure, causing an increase in the ordered degree and crystallinity of starch and making the structure of noodles denser. It made the mobility of water in the noodles decrease, and more tightly bound water was transformed into weakly bound water and free water. HTH can be applied to industrial production of whole oat flour noodles. This study could effectively guide the production of high-quality whole oat flour noodles without any food additives.
Collapse
Affiliation(s)
- Yifu Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Tongliang Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Cheng Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jiake Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Siqi Qiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Junjun Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Shuhong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ye Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
11
|
Twin-Screw Extrusion of Oat: Evolutions of Rheological Behavior, Thermal Properties and Structures of Extruded Oat in Different Extrusion Zones. Foods 2022; 11:foods11152206. [PMID: 35892792 PMCID: PMC9329829 DOI: 10.3390/foods11152206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Further investigation of material properties during the extrusion process is essential to achieve precise control of the quality of the extrudate. Whole oat flour was used to produce low moisture puffed samples by a twin-screw extruder. X-ray diffraction (XRD), Scanning electron microscopy (SEM), infrared spectroscopy (FTIR), thermal analysis, and rheological experiments were used to deeply characterize changes in the structure and cross-linking of oats in different extrusion zones. Results indicated that the melting region was the main region that changed oat starch, including the major transformation of oat starch crystal morphology and the significant decrease of enthalpy representing the starch pasting peak in the differential scanning calorimeter (DSC) pattern (p < 0.05). Moreover, the unstable structure of the protein increased in the barrel and then decreased significantly (p < 0.05) after being extruded through the die head. The viscosity of oats increased in the cooking zone but decreased after the melting zone. A transformation occurred from elastic-dominant behavior to viscoelastic-dominant behavior for oats in the melting zone and after being extruded. This study provides further theoretical support for the research of the change of materials during extrusion and the development of oat-based food.
Collapse
|
12
|
Kong X, Li Y, Liu X. A review of thermosensitive antinutritional factors in plant-based foods. J Food Biochem 2022; 46:e14199. [PMID: 35502149 DOI: 10.1111/jfbc.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022]
Abstract
Legumes and cereals account for the vast proportion of people's daily intake of plant-based foods. Meanwhile, a large number of antinutritional factors in legumes and cereals hinder the body absorption of nutrients and reduce the nutritional value of food. In this paper, the antinutritional effects, determination, and passivation methods of thermosensitive antinutritional factors such as trypsin inhibitors, urease, lipoxygenase, and lectin were reviewed to provide theoretical help to reduce antinutritional factors in food and improve the utilization rate of plant-based food nutrition. Since trypsin inhibitors and lectin have been more extensively studied and reviewed previously, the review mainly focused on urease and lipoxygenase. This review summarized the information of thermosensitive antinutritional factors, trypsin inhibitors, urease, lipoxygenase, and lectin, in cereals and legumes. The antinutritional effects, and physical and chemical properties of trypsin inhibitors, urease, lipoxygenase, and lectin were introduced. At the same time, the research methods for the detection and inactivation of these four antinutritional factors were also summarized in the order of research conducted time. The rapid determination and inactivation of antinutrients will be the focus of attention for the food industry in the future to improve the nutritional value of food. Exploring what structural changes could passivation technologies bring to antinutritional factors will provide a theoretical basis for further understanding the mechanisms of antinutritional factor inactivation. PRACTICAL APPLICATIONS: Antinutritional factors in plant-based foods hinder the absorption of nutrients and reduce the nutritional value of the food. Among them, thermosensitive antinutritional factors, such as trypsin inhibitors, urease, lipoxygenase, and lectins, have a high proportion among the antinutritional factors. In this paper, we investigate thermosensitive antinutritional factors from three perspectives: the antinutritional effect of thermosensitive antinutritional factors, determination, and passivation methods. The current passivation methods for thermosensitive antinutritional factors revolve around biological, physical, and chemical aspects, and their elimination mechanisms still need further research, especially at the protein structure level. Reducing the level of antinutritional factors in the future food industry while controlling the loss of other nutrients in food is a goal that needs to be balanced. This paper reviews the antinutritional effects of thermosensitive antinutritional factors and passivation methods, expecting to provide new research ideas to improve the nutrient utilization of food.
Collapse
Affiliation(s)
- Xin Kong
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - You Li
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
13
|
Wang Q, Li L, Wang T, Zheng X. A review of extrusion-modified underutilized cereal flour: chemical composition, functionality, and its modulation on starchy food quality. Food Chem 2022; 370:131361. [PMID: 34788965 DOI: 10.1016/j.foodchem.2021.131361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/09/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Compared with three major cereals, underutilized cereals (UCs) are those with less use but having abundant bioactive components and better functionalities after proper processing. As a productive and energy-efficient technology, extrusion has been used for UC modification to improve its technological and nutritional quality. Extrusion could induce structural and quantitative changes in chemical components of UC flour, the degree of which is affected by extrusion intensity. Based on the predominant component (starch), functionalities of extruded underutilized cereal flour (EUCF) and potential mechanisms are reviewed. Considering bioactive compounds, it also summarizes the physiological functions of EUCF. EUCF incorporation could modulate the dough rheological behavior and starchy foods quality. Controlling extrusion intensity or incorporation level of EUCF is vital to achieve sensory-appealing and nutritious products. This paper gives comprehensive information of EUCF to promote its utilization in novel staple foods.
Collapse
Affiliation(s)
- Qingfa Wang
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Limin Li
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Ting Wang
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Xueling Zheng
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China.
| |
Collapse
|