1
|
Shi L, Zou Z, Zhu C, Wang H, Lin L, Wang J, Wei C. Structures, gelatinization properties and enzyme hydrolyses of starches from transparent and floury grains of rices subjected to field natural extreme high temperature. Food Chem 2024; 459:140392. [PMID: 39018617 DOI: 10.1016/j.foodchem.2024.140392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
Three rice varieties underwent the field natural extreme high temperature (EHT) with daily average temperature over 30 °C from 21 to 89 days after sowing, and had transparent, chalky and floury grains. The structures, gelatinization properties and enzyme hydrolyses of starches from transparent and floury grains were investigated. Compared with control transparent grains, floury grains subjected to EHT markedly decreased the contents of amylose molecules, amylopectin A chains and amylopectin B1 chains and increased the contents of amylopectin B2 and B3+ chains and the average branch-chain length of amylopectin. Both transparent and floury grains had A-type starches, but floury grain starches exhibited higher relative crystallinity, gelatinization temperature, retrogradation and pasting viscosities than transparent grain starches. Floury grain starches had lower hydrolysis rates than transparent grain starches. Native starches were more resistant to digestion but gelatinized and retrograded starches were more prone to digestion in floury grains than in transparent grains.
Collapse
Affiliation(s)
- Laiquan Shi
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Zihan Zou
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Chen Zhu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Hao Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Lingshang Lin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Juan Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Liu X, Xu Z, Zhang C, Xu Y, Ma M, Sui Z, Corke H. Dynamic development of changes in multi-scale structure during grain filling affect gelatinization properties of rice starch. Carbohydr Polym 2024; 342:122318. [PMID: 39048212 DOI: 10.1016/j.carbpol.2024.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
Rice was collected over the entire grain filling period (about 40 days) to explore the multi-structure evolution and gelatinization behavior changes of starch. During the early stage (DAA 6-14), the significant reduction in lamellar repeat distance (10.04 to 9.68 nm) and relative crystallinity (26.6 % to 22.7 %) was due to initial rapid accumulation of amylose (from 9.38 % to 14.05 %) and short amylopectin chains. Meanwhile, the decreased proportion of aggregation structure resulted in a decrease in the gelatinization temperature and a narrowed range of gelatinization temperature also indicated an increase in homogeneity as starch matured. Gelatinization enthalpy was mainly controlled by aggregation structure, which was negatively and positively related to the amylose content and the degree of order respectively. Peak viscosity of starch pasting increased and reached a maximum (924 cP) at DAA-21 due to larger granule size. Amylose and short amylopectin chains with degree of polymerization 6-12 showed positive and negative correlation with short-term retrogradation ability (setback value) respectively. The dynamics of different scale structure during grain filling had varying degrees of impact on gelatinization properties.
Collapse
Affiliation(s)
- Xiaoning Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zekun Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuting Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengting Ma
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Harold Corke
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
3
|
Karmakar B, Sarkar S, Chakraborty R, Saha SP, Thirugnanam A, Roy PK, Roy S. Starch-based biodegradable films amended with nano-starch and tannic acid-coated nano-starch exhibit enhanced mechanical and functional attributes with antimicrobial activity. Carbohydr Polym 2024; 341:122321. [PMID: 38876723 DOI: 10.1016/j.carbpol.2024.122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/06/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Starch-based biofilms are biodegradable, but their application is limited by lower mechanical strength and absence of antimicrobial properties. In this context, the present study attempted to unleash the potential of nanotechnology for synthesizing nano-starch (NS) and tannic acid-coated nano-starch (T-NS) for augmenting the tensile strength and antimicrobial properties of starch-based biofilms. Moreover, this study reports one of the first such attempts to improve the commercial viability of starch extracted from the corms of Amorphophallus paeoniifolius. In this study, NS and T-NS samples were first synthesized by the physical and chemical modification of the native starch (S) molecules. The NS and T-NS samples showed significantly smaller granule size, lower moisture content, and swelling power. Further, amendments with NS and T-NS samples (25 % and 50 %) to the native starch molecules were performed to obtain biofilm samples. The NSB (NS amended) and T-NSB (T-NS amended) biofilms showed comparatively higher tensile strength than SB films (100 % starch-based). The T-NSB showed greater antimicrobial activity against gram-positive and gram-negative bacteria. All the biofilms showed almost complete biodegradation in soil (in 10 days). Therefore, it can be concluded that additives like NS and T-NS can improve starch-based biofilms' mechanical strength and antimicrobial properties with considerable biodegradability.
Collapse
Affiliation(s)
- Biswanath Karmakar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Sayani Sarkar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Govt. College, Himachal Vihar, Matigara, Dist. Darjeeling, West Bengal, India.
| | - Shyama Prasad Saha
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Arunachalam Thirugnanam
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Pranab Kumar Roy
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
4
|
Wu W, Zhang TT, You LL, Wang ZY, Du SQ, Song HY, Wang ZH, Huang YJ, Liao JL. The QTL and Candidate Genes Regulating the Early Tillering Vigor Traits of Late-Season Rice in Double-Cropping Systems. Int J Mol Sci 2024; 25:1497. [PMID: 38338776 PMCID: PMC10855346 DOI: 10.3390/ijms25031497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Rice effective panicle is a major trait for grain yield and is affected by both the genetic tiller numbers and the early tillering vigor (ETV) traits to survive environmental adversities. The mechanism behind tiller bud formation has been well described, while the genes and the molecular mechanism underlying rice-regulating ETV traits are unclear. In this study, the candidate genes in regulating ETV traits have been sought by quantitative trait locus (QTL) mapping and bulk-segregation analysis by resequencing method (BSA-seq) conjoint analysis using rice backcross inbred line (BIL) populations, which were cultivated as late-season rice of double-cropping rice systems. By QTL mapping, seven QTLs were detected on chromosomes 1, 3, 4, and 9, with the logarithm of the odds (LOD) values ranging from 3.52 to 7.57 and explained 3.23% to 12.98% of the observed phenotypic variance. By BSA-seq analysis, seven QTLs on chromosomes 1, 2, 4, 5, 7, and 9 were identified using single-nucleotide polymorphism (SNP) and insertions/deletions (InDel) index algorithm and Euclidean distance (ED) algorithm. The overlapping QTL resulting from QTL mapping and BSA-seq analysis was shown in a 1.39 Mb interval on chromosome 4. In the overlap interval, six genes, including the functional unknown genes Os04g0455650, Os04g0470901, Os04g0500600, and ethylene-insensitive 3 (Os04g0456900), sialyltransferase family domain containing protein (Os04g0506800), and ATOZI1 (Os04g0497300), showed the differential expression between ETV rice lines and late tillering vigor (LTV) rice lines and have a missense base mutation in the genomic DNA sequences of the parents. We speculate that the six genes are the candidate genes regulating the ETV trait in rice, which provides a research basis for revealing the molecular mechanism behind the ETV traits in rice.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
| | - Tian-Tian Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
| | - Li-Li You
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
| | - Zi-Yi Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
| | - Si-Qi Du
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
| | - Hai-Yan Song
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zao-Hai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ying-Jin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiang-Lin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
5
|
Wang Z, Qu L, Li J, Niu S, Guo J, Lu D. Effects of exogenous salicylic acid on starch physicochemical properties and in vitro digestion under heat stress during the grain-filling stage in waxy maize. Int J Biol Macromol 2024; 254:127765. [PMID: 38287575 DOI: 10.1016/j.ijbiomac.2023.127765] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Waxy maize starch serves as a pivotal component in global food processing and industrial applications, while high temperature (HT) during the grain-filling stage seriously affects its quality. Salicylic acid (SA) has been recognized for its role in enhancing plant heat resistance. Nonetheless, its regulatory effect on the quality of waxy maize starch under HT conditions remains unclear. In this study, two waxy maize varieties, JKN2000 (heat-tolerant) and SYN5 (heat-sensitive) were treated with SA after pollination and then subjected to HT during the grain-filling stage to explore the effect of SA on grain yield and starch quality. The results indicate that exogenous SA under HT treatment led to an increase in kernel weight and starch content in both varieties. Moreover, SA reduced the HT-induced holes on the surfaces of starch granules, enlarged the starch granule size, elevated the amylopectin branching degree, and reduced amylopectin average chain length. Consequently, improvements of pasting viscosity and the decrease of retrogradation percentage of starch were observed with SA under HT. Exogenous SA reduced HT-induced rapidly digestible starch content in SYN5, but had no significant effect on that in JKN2000. In summary, SA pretreatment effectively alleviated the detrimental effects of HT on starch pasting and thermal properties of waxy maize.
Collapse
Affiliation(s)
- Zitao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Jing Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Shiduo Niu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China.
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
6
|
Zhang X, Zhang Q, Yang J, Jin Y, Wu J, Xu H, Xiao Y, Lai Y, Guo Z, Wang J, Shi W. Comparative Effects of Heat Stress at Booting and Grain-Filling Stage on Yield and Grain Quality of High-Quality Hybrid Rice. Foods 2023; 12:4093. [PMID: 38002151 PMCID: PMC10670581 DOI: 10.3390/foods12224093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/11/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Rice plants are highly sensitive to high-temperature stress, posing challenges to grain yield and quality. However, the impact of high temperatures on the quality of high-quality hybrid rice during the booting stage, as well as the differing effects of the booting and grain-filling stages on grain quality, are currently not well-known. Therefore, four high-quality hybrid rice were subjected to control (CK) and high-temperature stress during the booting (HT1) and grain-filling stages (HT2). Compared to the control, HT1 significantly reduced the spikelets panicle-1 (16.1%), seed setting rate (67.5%), and grain weight (7.4%), while HT2 significantly reduced the seed setting rate (6.0%) and grain weight (7.4%). In terms of quality, both HT1 and HT2 significantly increased chalkiness, chalky grain rate, gelatinization temperature, peak viscosity (PV), trough viscosity (TV), final viscosity (FV), and protein content in most varieties, and significantly decreased grain length, grain width, total starch content, and amylose content. However, a comparison between HT1 and HT2 revealed that the increase in chalkiness, chalky grain rate, PV, TV, and FV was greater under HT2. HT1 resulted in a greater decrease in grain length, grain width, total starch content, and amylose content, as well as an increase in protein content. Additionally, HT1 led to a significant decrease in amylopectin content, which was not observed under HT2. Therefore, future efforts in breeding and cultivating high-quality hybrid rice should carefully account for the effects of high temperatures at different stages on both yield and quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wanju Shi
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (Q.Z.); (J.Y.); (Y.J.); (J.W.); (H.X.); (Y.X.); (Y.L.); (Z.G.); (J.W.)
| |
Collapse
|
7
|
Wang H, Wu E, Ma Q, Zhang H, Feng Y, Yang P, Gao J, Feng B. Comparison of the fine structure and physicochemical properties of proso millet (Panicum miliaceum L.) starch from different ecological regions. Int J Biol Macromol 2023; 249:126115. [PMID: 37541463 DOI: 10.1016/j.ijbiomac.2023.126115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/26/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Field experiments were conducted to evaluate the morphology, granule size, fine structure, thermal properties, and pasting properties of starch from a waxy (139) and a non-waxy (297) varieties of proso millet grown in Yulin (YY) and Yangling (YL). Compared with the starches from the two varieties grown in YY, the starches from the two varieties grown in YL exhibited higher relative crystallinities, 1045/1022 cm-1 ratio, and amounts of amylopectin long branch chains (APL) but lower 1022/995 cm -1 ratio, amounts of amylopectin short branch chains (APs), and APs/APL ratios. Starches from YL also synthesized long branch-chain amylopectin to enhance intermolecular interactions and form a stable granular structure, which resulted in increased starch gelatinization temperature, enhanced shear resistance, and reduced setback viscosity. Starch from the waxy (139) variety has good application prospects in the food industry because of its high gelatinization temperature and light transmittance and low setback value, which can be ascribed to its extremely low amylose content, polydispersity index, high molecular weight, and dispersed molecular density. It may serve as a reference for applying proso millet starches in the food industry and developing breeding programs to improve starch quality.
Collapse
Affiliation(s)
- Honglu Wang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, Shaanxi Province, China
| | - Enguo Wu
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, Shaanxi Province, China
| | - Qian Ma
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, Shaanxi Province, China
| | - Hui Zhang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, Shaanxi Province, China
| | - Yu Feng
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, Shaanxi Province, China
| | - Pu Yang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, Shaanxi Province, China
| | - Jinfeng Gao
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, Shaanxi Province, China
| | - Baili Feng
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
8
|
Gu X, Zhang X, Lu W, Lu D. Starch structural and functional properties of waxy maize under different temperature regimes at grain formation stage. Food Chem X 2022; 16:100463. [PMID: 36217316 PMCID: PMC9547181 DOI: 10.1016/j.fochx.2022.100463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
Excessive high temperature (>35 °C) enlarges and corrodes the starch granules. Heat stress increases the proportion of amylopectin long chains. Extremely high temperature induces the lowest pasting viscosity and the highest retrogradation of starch. This study provides scientific basis for the deterioration of waxy maize starch under severe high temperature.
Global warming affects crop productivity, but the influence is uncertain under different temperature regimes. The impact of growth temperatures (T0, 28 °C/20 °C; T1, 32 °C/24 °C; T2, 36 °C/28 °C; T3, 40 °C/32 °C) at grain formation stage on the waxy maize starch physicochemical properties of Suyunuo5 (heat-sensitive hybrid) and Yunuo7 (heat-tolerant hybrid) was studied. Compared with T0, T2 and T3 resulted in a higher number of starch granules with more pitted or uneven surface due to the enhanced enzymatic activities of α-amylase and β-amylase. Meanwhile, large starch granule size, long amylopectin chain-length, and high relative crystallinity under T2 and T3 resulted in low pasting viscosities and gelatinization enthalpy and high retrogradation percentage, especially under T3. The low coefficient variation of gelatinization temperatures indicated that the differences were meaninglessness. The influence of T1 on the pasting viscosities were more obvious in Suyunuo5. In conclusion, high temperatures at grain formation stage deteriorated the starch pasting and retrogradation properties.
Collapse
Affiliation(s)
- Xiaotian Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Weiping Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou 225009, China
- Corresponding author at: Agricultural College of Yangzhou University, Yangzhou, China.
| |
Collapse
|
9
|
Development of Certified Reference Materials for the Determination of Apparent Amylose Content in Rice. Molecules 2022; 27:molecules27144647. [PMID: 35889518 PMCID: PMC9322866 DOI: 10.3390/molecules27144647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Apparent amylose content (AAC) is one of the most important parameters in rice quality evaluation. In this study, four rice reference materials used to test rice AAC were developed. The AAC of rice reference materials were measured by a spectrophotometric method with a defatting procedure, calibrated from potato amylose and waxy rice amylopectin at the absorption wavelengths of 620 and 720 nm. Homogeneity test (n = 20) was judged by F-test based on the mean squares of among and within bottles, and short- and long-term stability monitoring was performed by T-test to check if there was significant degradation at the delivery temperature of under 40 °C (14 days) and at 0–4 °C storage condition (18 months), respectively. After joint evaluation by ten laboratories, Dixion and Cochran statistical analyses were presented. The expanded uncertainties were calculated based on the uncertainty of homogeneity, short- and long-term stability, and inter-laboratory validation containing factor k = 2. It found that the four reference materials were homogenous and stable, and had the AAC (g/100 g, k = 2) of 2.96 ± 1.01, 10.68 ± 0.66, 17.18 ± 1.04, and 16.09 ± 1.29, respectively, at 620 nm, and 1.46 ± 0.49, 10.44 ± 0.56, 16.82 ± 0.75, and 24.33 ± 0.52, respectively, at 720 nm. It was indicated that 720 nm was more suitable for the determination of rice AAC with lower uncertainties. The determinations of the AAC of 11 rice varieties were carried out by two methods, the method without defatting and with calibration from the four rice reference materials and the method with a defatting procedure and calibrating from potato amylose and waxy rice amylopectin. It confirmed that the undefatted rice reference materials could achieve satisfactory results to test the rice samples with the AAC ranging from 1 to 25 g/100 g. It would greatly reduce the time cost and improve testing efficiency and applicability, and provide technical support for the high-quality development of the rice industry.
Collapse
|
10
|
Gu X, Yang S, Li G, Lu W, Lu D. Starch morphological, structural, pasting, and thermal properties of waxy maize under different heat stress durations at grain formation stage. Food Energy Secur 2022. [DOI: 10.1002/fes3.378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Xiaotian Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou China
| | - Siling Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou China
| | - Guanghao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou China
| | - Weiping Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety The Ministry of Education of China Yangzhou China
| |
Collapse
|