1
|
Abstract
Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.
Collapse
|
2
|
Sanders BP, de los Rios Oakes I, van Hoek V, Bockstal V, Kamphuis T, Uil TG, Song Y, Cooper G, Crawt LE, Martín J, Zahn R, Lewis J, Wimmer E, Custers JHHV, Schuitemaker H, Cello J, Edo-Matas D. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine. PLoS Pathog 2016; 12:e1005483. [PMID: 27032093 PMCID: PMC4816566 DOI: 10.1371/journal.ppat.1005483] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/09/2016] [Indexed: 01/11/2023] Open
Abstract
The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4-9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive PER.C6 cell culture platform, the stably attenuated CAVA strains may serve as an attractive low-cost and (bio)safe option for the production of a novel next generation IPV.
Collapse
Affiliation(s)
- Barbara P. Sanders
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Isabel de los Rios Oakes
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Vladimir van Hoek
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Viki Bockstal
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Tobias Kamphuis
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Taco G. Uil
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Yutong Song
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Gillian Cooper
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Laura E. Crawt
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Javier Martín
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Roland Zahn
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - John Lewis
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Jerome H. H. V. Custers
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Hanneke Schuitemaker
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Jeronimo Cello
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Diana Edo-Matas
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| |
Collapse
|
4
|
Alirezaie B, Taqavian M, Aghaiypour K, Esna-Ashari F, Shafyi A. Phenotypic and genomic analysis of serotype 3 Sabin poliovirus vaccine produced in MRC-5 cell substrate. J Med Virol 2011; 83:897-903. [PMID: 21412797 DOI: 10.1002/jmv.21804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cell substrate has a pivotal role in live virus vaccines production. It is necessary to evaluate the effects of the cell substrate on the properties of the propagated viruses, especially in the case of viruses which are unstable genetically such as polioviruses, by monitoring the molecular and phenotypical characteristics of harvested viruses. To investigate the presence/absence of mutation(s), the near full-length genomic sequence of different harvests of the type 3 Sabin strain of poliovirus propagated in MRC-5 cells were determined. The sequences were compared with genomic sequences of different virus seeds, vaccines, and OPV-like isolates. Nearly complete genomic sequencing results, however, revealed no detectable mutations throughout the genome RNA-plaque purified (RSO)-derived monopool of type 3 OPVs manufactured in MRC-5. Thirty-six years of experience in OPV production, trend analysis, and vaccine surveillance also suggest that: (i) different monopools of serotype 3 OPV produced in MRC-5 retained their phenotypic characteristics (temperature sensitivity and neuroattenuation), (ii) MRC-5 cells support the production of acceptable virus yields, (iii) OPV replicated in the MRC-5 cell substrate is a highly efficient and safe vaccine. These results confirm previous reports that MRC-5 is a desirable cell substrate for the production of OPV.
Collapse
Affiliation(s)
- Behnam Alirezaie
- Human Viral Vaccines Research and Production Department, Razi Vaccine and Serum Research Institute, Karaj, Tehran, Iran.
| | | | | | | | | |
Collapse
|