1
|
Hume J, Lowry K, Whiley DM, Irwin AD, Bletchly C, Sweeney EL. Application of the ViroKey® SQ FLEX assay for detection of cytomegalovirus antiviral resistance. J Clin Virol 2023; 167:105556. [PMID: 37566984 DOI: 10.1016/j.jcv.2023.105556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) is a viral infection which establishes lifelong latency, often reactivating and causing disease in immunosuppressed individuals, including haematopoietic stem cell transplant (HSCT) recipients. Treatment can be problematic due to antiviral resistance which substantially increases the risk of patient mortality. Diagnostic testing capabilities for CMV antiviral resistance in Australia and elsewhere have traditionally relied on gene-specific Sanger sequencing approaches, however, are now being superseded by next generation sequencing protocols. OBJECTIVE Provide a snapshot of local mutations and explore the feasibility of the ViroKeyࣨ® SQ FLEX Genotyping Assay (Vela Diagnostics Pty Ltd) by examining sequencing success. METHOD Performed sequencing on adult (n = 38) and paediatric (n = 81) plasma samples, over a large range of viral loads (above and below the assay recommended threshold of ≥1,000 International Units (IU)/mL; noting most of our paediatric samples have loads <1,000 IU/mL). RESULTS Eleven test runs (including three repeat runs; 14 to 15 samples per run) were conducted, and four runs were deemed valid. The overall individual sample success rate for the four evaluable test runs was 71.2% (42/59 samples); 80.4% (37/46) samples ≥1,000 IU/mL were valid. Ten clinically important antiviral resistance mutations were detected, the most common being A594V in the UL97 gene, found in 6 (5%) samples. CONCLUSIONS A range of technical issues were experienced, however with improvement this platform could be a useful addition to routine pathology workflows, providing timely antiviral resistance results for patients undergoing HSCT.
Collapse
Affiliation(s)
- Jocelyn Hume
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Kym Lowry
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Queensland Paediatric Infectious Diseases (QPID) Sakzewski Laboratory, Centre for Children's Health Research, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - David M Whiley
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Adam D Irwin
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Infection Management and Prevention Service, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Cheryl Bletchly
- Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Emma L Sweeney
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
Hume J, Sweeney EL, Lowry K, Fraser C, Clark JE, Whiley DM, Irwin AD. Cytomegalovirus in children undergoing haematopoietic stem cell transplantation: a diagnostic and therapeutic approach to antiviral resistance. Front Pediatr 2023; 11:1180392. [PMID: 37325366 PMCID: PMC10267881 DOI: 10.3389/fped.2023.1180392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous virus which causes a mild illness in healthy individuals. In immunocompromised individuals, such as children receiving haematopoietic stem cell transplantation, CMV can reactivate, causing serious disease and increasing the risk of death. CMV can be effectively treated with antiviral drugs, but antiviral resistance is an increasingly common complication. Available therapies are associated with adverse effects such as bone marrow suppression and renal impairment, making the choice of appropriate treatment challenging. New agents are emerging and require evaluation in children to establish their role. This review will discuss established and emerging diagnostic tools and treatment options for CMV, including antiviral resistant CMV, in children undergoing haematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Jocelyn Hume
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Brisbane, QLD, Australia
| | - Emma L. Sweeney
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kym Lowry
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Chris Fraser
- Blood and Bone Marrow Transplant Program, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - Julia E. Clark
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - David M. Whiley
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Brisbane, QLD, Australia
| | - Adam D. Irwin
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Demin MV, Tikhomirov DS, Biderman BV, Drokov MY, Sudarikov AB, Tupoleva TA, Filatov FP. [Mutations in the UL97 gene of cytomegalovirus ( Herpesvirales: Herpesviridae: Cytomegalovirus: Human betaherpesvirus 5) associated with ganciclovir resistance in recipients of allogeneic hematopoietic stem cells]. Vopr Virusol 2022; 67:37-47. [PMID: 35293187 DOI: 10.36233/0507-4088-90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Infection caused by cytomegalovirus (CMV) is a serious problem for patients with weakened immunity, including patients with hematopoietic depression. The cases of complications associated with cytomegalovirus require antiviral therapy. However, during the natural mutation process, especially with prolonged use of drugs in suboptimal doses, CMV strains resistant to the action of antiviral drugs (such as ganciclovir, valganciclovir) may occur. Hypothetically, the emergence of resistance in the virus may cause a more aggressive course of infection, the ineffectiveness of antiviral therapy and, as a result, an increase in the number of deaths. In this regard, timely detection of mutations that can potentially lead to the resistance of the virus to antiviral drugs during hematopoietic stem cell transplantation (HSCT), as well as during organ and tissue transplantation, may be important when making a therapeutic decision. We describe three clinical cases for which the dynamics of the appearance of a mutant strain of CMV by the UL97 gene, which correlates with the viral load and clinical picture, is analyzed.The aim of the study was to determine the timing of the occurrence of mutations in CMV phosphotransferase UL97 gene associated with resistance to antiviral drugs in patients with hemoblastoses after allogeneic hematopoietic stem cell (allo-HSCs) transplantation. MATERIAL AND METHODS The study included 48 samples of CMV DNA isolated from the peripheral blood of three allo-HSCs recipients with CMV infection who were treated in the clinics of the FSBI «National Medical Research Center for Hematology» of the Ministry of Health of Russia with oncohematological diseases during 2015-2017. Patients received conditional codes (PR, PD, and FS). Mutations associated with antiviral therapy (AVT) resistance were identified in all patients. Sanger sequencing was used for mutation detection. The obtained DNA sequences were analyzed using Nucleotide BLAST and Genome compiler software. Mutations were searched in MRA mutation resistance analyzer software. The nucleotide sequences were compared with the UL97 reference sequence of the Merlin CMV strain using this software environment. RESULTS AND DISCUSSION For all patients in whom the virus strains containing C592G (PR), C607F (PD) and C603W (FS) mutations were detected, the timing of the mutation occurrence was determined at days 187, 124 and 1184, respectively. The emergence of mutations with a high resistance factor was shown to be accompanied by an increase in viral load (VL), the appearance of a clinical picture characteristic of CMV infection and a lack of an adequate response to therapy with ganciclovir and its derivatives. CONCLUSION Using these results, it is proposed to develop the test system based on random polymerase chain reaction (rPCR) to detect mutations in the most frequently encountered codons: M460I/V, C592G, A591V, A594T/V, L595F/S, C603W. Given that the data on the prevalence of these mutations were obtained from foreign sources, it is advisable to conduct similar studies on the frequency of mutations in the UL97 gene among the population of the Russian Federation in order to improve the quality and accuracy of test systems.
Collapse
Affiliation(s)
- M V Demin
- FSBI «National Medical Research Center for Hematology» of the Ministry of Health of Russia
| | - D S Tikhomirov
- FSBI «National Medical Research Center for Hematology» of the Ministry of Health of Russia
| | - B V Biderman
- FSBI «National Medical Research Center for Hematology» of the Ministry of Health of Russia
| | - M Yu Drokov
- FSBI «National Medical Research Center for Hematology» of the Ministry of Health of Russia
| | - A B Sudarikov
- FSBI «National Medical Research Center for Hematology» of the Ministry of Health of Russia
| | - T A Tupoleva
- FSBI «National Medical Research Center for Hematology» of the Ministry of Health of Russia
| | - F P Filatov
- FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»; FSBI «National Research Centre for Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| |
Collapse
|
4
|
Bogožalec Košir A, Cvelbar T, Kammel M, Grunert HP, Zeichhardt H, Milavec M. Digital PCR method for detection and quantification of specific antimicrobial drug-resistance mutations in human cytomegalovirus. J Virol Methods 2020; 281:113864. [PMID: 32380093 DOI: 10.1016/j.jviromet.2020.113864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
Antimicrobial drug resistance is one of the biggest threats to human health worldwide. Timely detection and quantification of infectious agents and their susceptibility to antimicrobial drugs are crucial for efficient management of resistance to antiviral drugs. In clinical settings, viral drug resistance is most often associated with prolonged treatment of chronic infections, and assessed by genotyping methods; e.g., sequencing and PCR. These approaches have limitations: sequencing can be expensive and does not provide quantification; and qPCR quantification is hampered by a lack of reference materials for standard curves. In recent years, digital PCR has been introduced, which provides absolute quantification without the need for reference materials for standard curves. Using digital PCR, we have developed a rapid, sensitive and accurate method for genotyping and quantification of the most prevalent mutations that cause human cytomegalovirus resistance to ganciclovir.
Collapse
Affiliation(s)
- Alexandra Bogožalec Košir
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Tašja Cvelbar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Martin Kammel
- INSTAND, Gesellschaft Zur Förderung Der Qualitätssicherung in Medizinischen Laboratorien e.V. Ubierstr.20, 40223 Düsseldorf, Germany; IQVD GmbH, Institut Für Qualitätssicherung in Der Virusdiagnostik, Potsdamer Chaussee 80, 14129 Berlin, Germany
| | - Hans-Peter Grunert
- GBD Gesellschaft Für Biotechnologische Diagnostik mbH, Potsdamer Chaussee 80, 14129 Berlin, Germany
| | - Heinz Zeichhardt
- INSTAND, Gesellschaft Zur Förderung Der Qualitätssicherung in Medizinischen Laboratorien e.V. Ubierstr.20, 40223 Düsseldorf, Germany; IQVD GmbH, Institut Für Qualitätssicherung in Der Virusdiagnostik, Potsdamer Chaussee 80, 14129 Berlin, Germany; GBD Gesellschaft Für Biotechnologische Diagnostik mbH, Potsdamer Chaussee 80, 14129 Berlin, Germany
| | - Mojca Milavec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Hancer VS, Yarimcan FS, Buyukdogan M, Aki SZ, Oksuz B, Acar K, Acar M, Bulut P. A novel ganciclovir resistance mutation in the UL97 gene of the HHV-5 in an adult hematopoietic stem cell transplant recipient. Future Virol 2017. [DOI: 10.2217/fvl-2017-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Therapeutic management of cytomegalovirus (CMV) disease in hematopoietic stem cell transplantation patients can become a challenge because of the emergence of anti-CMV drug resistance. This case report presents a patient with clinical ganciclovir resistance due to a new mutation: histidine-to-asparagine change at residue 393 of UL97. This mutation, which is located in the nonfunctional region of the UL97 gene, is very unusual. Having more information about the mutations leading to drug resistance in CMV is important for both improved clinical management and development of new diagnostic tests and drugs.
Collapse
Affiliation(s)
- Veysel Sabri Hancer
- Department of Medical Genetics, Faculty of Medicine, Istinye University, Istanbul
| | - Filiz Saglam Yarimcan
- Department of Medical Microbiology, Faculty of Medicine, Istinye University, Istanbul
| | - Murat Buyukdogan
- Department of Medical Genetics, Faculty of Medicine, Istinye University, Istanbul
| | - Sahika Zeynep Aki
- Division of Hematology, Department of Internal Medicine, Bahcesehir University, Istanbul
| | - Burcu Oksuz
- Istinye University Genetic Diagnosis Center, Istanbul
| | - Kadir Acar
- Division of Hematology, Department of Internal Medicine, Altinbas University, Istanbul
| | - Muradiye Acar
- Istinye University Genetic Diagnosis Center, Istanbul
| | - Pelin Bulut
- Istinye University Genetic Diagnosis Center, Istanbul
| |
Collapse
|
6
|
Waters S, Brook E, Lee S, Estiasari R, Ariyanto I, Price P. HIV patients, healthy aging and transplant recipients can reveal the hidden footprints of CMV. Clin Immunol 2017; 187:107-112. [PMID: 29108855 DOI: 10.1016/j.clim.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/24/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
Cytomegalovirus (CMV) is a β-herpesvirus. Latent infections are common in all populations. However age-associated increases in levels of CMV-reactive antibody are testament to repeated reactivations and periods of viral replication. CMV has been associated with several diseases of aging, including vasculopathy and neurocognitive impairment. These conditions occur at a younger age in persons with particularly high burdens of CMV - transplant recipients and people living with HIV. Here we define the "clinical footprints" as immunopathologies triggered by CMV that develop over many years. A high burden of CMV also drives accumulation of multifunctional terminally-differentiated αβ T-cells, a novel population of Vδ2- γδ T-cells, and a population of CD56lo NK cells lacking a key regulatory molecule. An understanding of these "immunological footprints" of CMV may reveal how they collectively promote the "clinical footprints" of the virus. This is explored here in transplant recipients, HIV patients and healthy aging.
Collapse
Affiliation(s)
- Shelley Waters
- School of Biomedical Science, Curtin University, Bentley, Australia
| | - Emily Brook
- School of Biomedical Science, Curtin University, Bentley, Australia
| | - Silvia Lee
- School of Biomedical Science, Curtin University, Bentley, Australia; Department of Microbiology, Pathwest Laboratory Medicine, Fiona Stanley Hospital, Australia
| | - Riwanti Estiasari
- Faculty of Medicine, Universitas Indonesia and Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Ibnu Ariyanto
- Faculty of Medicine, Universitas Indonesia and Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Patricia Price
- School of Biomedical Science, Curtin University, Bentley, Australia; Faculty of Medicine, Universitas Indonesia and Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| |
Collapse
|
7
|
Campos AB, Ribeiro J, Boutolleau D, Sousa H. Human cytomegalovirus antiviral drug resistance in hematopoietic stem cell transplantation: current state of the art. Rev Med Virol 2016; 26:161-82. [DOI: 10.1002/rmv.1873] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/09/2016] [Accepted: 02/01/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Ana Bela Campos
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Faculty of Medicine; University of Porto; Porto Portugal
| | - Joana Ribeiro
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Virology Service; Portuguese Oncology Institute of Porto; Porto Portugal
- Faculty of Medicine; University of Porto; Porto Portugal
| | - David Boutolleau
- Sorbonne Universités; UPMC Université Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris); Paris France
- INSERM, U1135, CIMI-Paris; Paris France
- AP-HP, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles Foix; Service de Virologie; Paris France
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Virology Service; Portuguese Oncology Institute of Porto; Porto Portugal
| |
Collapse
|
8
|
Patients with refractory cytomegalovirus (CMV) infection following allogeneic haematopoietic stem cell transplantation are at high risk for CMV disease and non-relapse mortality. Clin Microbiol Infect 2015; 21:1121.e9-15. [DOI: 10.1016/j.cmi.2015.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/10/2015] [Accepted: 06/08/2015] [Indexed: 11/23/2022]
|