1
|
Huang L, Liu L, Zhu J, Chen N, Chen J, Chan CF, Gao F, Yin Y, Sun J, Zhang R, Zhang K, Qi W, Yue J. Bis-benzylisoquinoline alkaloids inhibit flavivirus entry and replication by compromising endolysosomal trafficking and autophagy. Virol Sin 2024:S1995-820X(24)00140-8. [PMID: 39251138 DOI: 10.1016/j.virs.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Flaviviruses, such as dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV), represent a substantial public health challenge as there are currently no approved treatments available. Here, we investigated the antiviral effects of bis-benzylisoquinoline alkaloids (BBAs) on flavivirus infections. We evaluated five specific BBAs-berbamine, tetrandrine, iso-tetrandrine, fangchinoline, and cepharanthine-and found that they effectively inhibited infections by ZIKV, DENV, or JEV by blocking virus entry and genome replication stages in the flavivirus life cycle. Furthermore, we synthesized a fluorophore-conjugated BBA and showed that BBAs targeted endolysosomes, causing lysosomal pH alkalization. Mechanistic studies on inhibiting ZIKV infection by BBAs revealed that these compounds blocked TRPML channels, leading to lysosomal dysfunction and reducing the expression of NCAM1, a key receptor for the entry of ZIKV into cells, thereby decreasing cells susceptibility to ZIKV infection. Additionally, BBAs inhibited the fusion of autophagosomes and lysosomes, significantly reducing viral RNA replication. Collectively, our results suggest that BBAs inhibit flavivirus entry and replication by compromising endolysosomal trafficking and autophagy, respectively, underscoring the potential of BBAs as therapeutic agents against flavivirus infections.
Collapse
Affiliation(s)
- Lihong Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lele Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Junhai Zhu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, China
| | - Jie Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Chuen-Fuk Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Fei Gao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Youqin Yin
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jiufeng Sun
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kehui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Wenbao Qi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China.
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China; Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Global Health Research Center, Duke Kunshan University, Kunshan, 215316, China; College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Lin CL, Kiu YT, Kan JY, Chang YJ, Hung PY, Lu CH, Lin WL, Hsieh YW, Kao JY, Hu NJ, Lin CW. The Antiviral Activity of Varenicline against Dengue Virus Replication during the Post-Entry Stage. Biomedicines 2023; 11:2754. [PMID: 37893127 PMCID: PMC10604274 DOI: 10.3390/biomedicines11102754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Dengue virus (DENV) poses a significant global health challenge, with millions of cases each year. Developing effective antiviral drugs against DENV remains a major hurdle. Varenicline is a medication used to aid smoking cessation, with anti-inflammatory and antioxidant effects. In this study, varenicline was investigated for its antiviral potential against DENV. This study provides evidence of the antiviral activity of varenicline against DENV, regardless of the virus serotype or cell type used. Varenicline demonstrated dose-dependent effects in reducing viral protein expression, infectivity, and virus yield in Vero and A549 cells infected with DENV-1 and DENV-2, with EC50 values ranging from 0.44 to 1.66 μM. Time-of-addition and removal experiments demonstrated that varenicline had a stronger inhibitory effect on the post-entry stage of DENV-2 replication than on the entry stage, as well as the preinfection and virus attachment stages. Furthermore, cell-based trans-cleavage assays indicated that varenicline dose-dependently inhibited the proteolytic activity of DENV-2 NS2B-NS3 protease. Docking models revealed the formation of hydrogen bonds and van der Waals forces between varenicline and specific residues in the DENV-1 and DENV-2 NS2B-NS3 proteases. These results highlight the antiviral activity and potential mechanism of varenicline against DENV, offering valuable insights for further research and development in the treatment of DENV infection.
Collapse
Affiliation(s)
- Ching-Lin Lin
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-L.L.); (J.-Y.K.)
| | - Yan-Tung Kiu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404328, Taiwan; (Y.-T.K.); (J.-Y.K.); (P.-Y.H.)
| | - Ju-Ying Kan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404328, Taiwan; (Y.-T.K.); (J.-Y.K.); (P.-Y.H.)
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404328, Taiwan;
| | - Yu-Jen Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404328, Taiwan;
| | - Ping-Yi Hung
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404328, Taiwan; (Y.-T.K.); (J.-Y.K.); (P.-Y.H.)
| | - Chih-Hao Lu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan;
| | - Wen-Ling Lin
- Department of Pharmacy, China Medical University Hospital, Taichung 404328, Taiwan; (W.-L.L.); (Y.-W.H.)
- School of Pharmacy, China Medical University, Taichung 404328, Taiwan
| | - Yow-Wen Hsieh
- Department of Pharmacy, China Medical University Hospital, Taichung 404328, Taiwan; (W.-L.L.); (Y.-W.H.)
- School of Pharmacy, China Medical University, Taichung 404328, Taiwan
| | - Jung-Yie Kao
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-L.L.); (J.-Y.K.)
| | - Nien-Jen Hu
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-L.L.); (J.-Y.K.)
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404328, Taiwan; (Y.-T.K.); (J.-Y.K.); (P.-Y.H.)
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404328, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
3
|
Urmi TJ, Mosharrafa RA, Hossain MJ, Rahman MS, Kadir MF, Islam MR. Frequent outbreaks of dengue fever in South Asian countries-A correspondence analyzing causative factors and ways to avert. Health Sci Rep 2023; 6:e1598. [PMID: 37779664 PMCID: PMC10539675 DOI: 10.1002/hsr2.1598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Affiliation(s)
| | - Rana Al Mosharrafa
- Department of Business AdministrationFaculty of Business Studies, Prime UniversityDhakaBangladesh
| | | | | | - Mohammad Fahim Kadir
- Department of PharmacologyLake Erie College of Osteopathic Medicine (LECOM)EriePennsylvaniaUSA
| | | |
Collapse
|
4
|
Zeyaullah M, Muzammil K, AlShahrani AM, Khan N, Ahmad I, Alam MS, Ahmad R, Khan WH. Preparedness for the Dengue Epidemic: Vaccine as a Viable Approach. Vaccines (Basel) 2022; 10:1940. [PMID: 36423035 PMCID: PMC9697487 DOI: 10.3390/vaccines10111940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 08/08/2023] Open
Abstract
Dengue fever is one of the significant fatal mosquito-borne viral diseases and is considered to be a worldwide problem. Aedes mosquito is responsible for transmitting various serotypes of dengue viruses to humans. Dengue incidence has developed prominently throughout the world in the last ten years. The exact number of dengue cases is underestimated, whereas plenty of cases are misdiagnosed as alternative febrile sicknesses. There is an estimation that about 390 million dengue cases occur annually. Dengue fever encompasses a wide range of clinical presentations, usually with undefinable clinical progression and outcome. The diagnosis of dengue depends on serology tests, molecular diagnostic methods, and antigen detection tests. The therapeutic approach relies completely on supplemental drugs, which is far from the real approach. Vaccines for dengue disease are in various stages of development. The commercial formulation Dengvaxia (CYD-TDV) is accessible and developed by Sanofi Pasteur. The vaccine candidate Dengvaxia was inefficient in liberating a stabilized immune reaction toward different serotypes (1-4) of dengue fever. Numerous promising vaccine candidates are now being developed in preclinical and clinical stages even though different serotypes of DENV exist that worsen the situation for a vaccine to be equally effective for all serotypes. Thus, the development of an efficient dengue fever vaccine candidate requires time. Effective dengue fever management can be a multidisciplinary challenge, involving international cooperation from diverse perspectives and expertise to resolve this global concern.
Collapse
Affiliation(s)
- Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Nida Khan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Md. Shane Alam
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wajihul H. Khan
- Department of Microbiology, All India Institute of Medical Sciences Delhi, New Delhi 110029, India
| |
Collapse
|
5
|
Dinakaran D, Sreeraj VS, Venkatasubramanian G. Dengue and Psychiatry: Manifestations, Mechanisms, and Management Options. Indian J Psychol Med 2022; 44:429-435. [PMID: 36157026 PMCID: PMC9460008 DOI: 10.1177/02537176211022571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dengue is an arboviral infection endemic in tropical countries. Neurological sequelae to dengue infection are not uncommon, and psychiatric manifestations are increasingly reported. This narrative review aims to present the varied manifestations, postulated mechanisms, and the available treatment options for psychiatric morbidity associated with dengue. The evidence available from eight observational studies is summarized in this review. Depression and anxiety are noted to be prevalent during both the acute and convalescent stages of the infection. The presence of encephalopathy and other neurological conditions is not a prerequisite for developing psychiatric disorders. However, treatment options to manage such psychiatric manifestations were not specified in the observational studies. Anecdotal evidence from case reports is outlined. Special attention is paid to the role of epigenetic modifications following dengue infections and the role of histone deacetylase inhibitors in the management. DNA methylation inhibitors such as valproic acid play a significant role in reversing stress-, viral-, or drug-induced epigenetic modifications.
Collapse
Affiliation(s)
- Damodharan Dinakaran
- Dept. of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Vanteemar S Sreeraj
- Dept. of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Ganesan Venkatasubramanian
- Dept. of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
6
|
de Oliveira JG, Pilz-Júnior HL, de Lemos AB, da Silva da Costa FA, Fernandes M, Gonçalves DZ, Variza PF, de Moraes FM, Morisso FDP, Magnago RF, Zepon KM, Kanis LA, da Silva OS, Prophiro JS. Polymer-based nanostructures loaded with piperine as a platform to improve the larvicidal activity against Aedes aegypti. Acta Trop 2022; 230:106395. [PMID: 35278367 DOI: 10.1016/j.actatropica.2022.106395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022]
Abstract
Piperine is an alkaloid extracted from the seed of Piper spp., which has demonstrated a larvicidal effect against Ae. aegypti. The incorporation of piperine into nanostructured systems can increase the effectiveness of this natural product in the control of Ae. aegypti larvae. In this study, we evaluated the effectiveness of piperine loaded or not into two nanostructured systems (named NS-A and NS-B) prepared by the nanoprecipitation method. The Ae. aegypti larvae were exposed to different concentrations of piperine loaded or not (2 to 16 ppm) and the mortality was investigated after 24, 48, and 72 hours. The nanostructures prepared were spherical in shape with narrow size distribution and great encapsulation efficiency. The lethal concentration 50 (LC50) for non-loaded piperine were 13.015 ppm (24 hours), 8.098 ppm (48 hours), and 7.248 ppm (72 hours). The LC50 values found for NS-A were 35.378 ppm (24 hours), 12.091 ppm (48 hours), and 8.011 ppm (72 hours), whereas the values found for NS-B were 21.267 ppm (24 hours), 12.091 ppm (48 hours), and 8.011 ppm (72 hours). Collectively, these findings suggested that non-loaded piperine caused higher larval mortality in the first hours of exposure while the nanostructured systems promoted the slow release of piperine and thereby increased the larvicidal activity over time. Therefore, loading piperine into nanostructured systems might be an effective tool to improve the larval control of vector Ae. aegypti.
Collapse
Affiliation(s)
- Joice Guilherme de Oliveira
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências da Saúde. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Harry Luiz Pilz-Júnior
- Universidade Federal do Rio Grande do Sul - UFRGS. Instituto de Ciências Básicas da Saúde. Departamento de Microbiologia, Parasitologia e Imunologia. Rua Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil.
| | - Alessandra Bittencourt de Lemos
- Universidade Federal do Rio Grande do Sul - UFRGS. Instituto de Ciências Básicas da Saúde. Departamento de Microbiologia, Parasitologia e Imunologia. Rua Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil
| | - Felipe Allan da Silva da Costa
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências da Saúde. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Millena Fernandes
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências Ambientais. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Douglas Zelinger Gonçalves
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências da Saúde. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Paula Fassicolo Variza
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências da Saúde. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Fernanda Mendes de Moraes
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências da Saúde. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Fernando Dal Pont Morisso
- Universidade Feevale. Pós-Graduação em Tecnologia de Materiais e Processos Industriais. 93525-075, Novo Hamburgo, RS, Brazil
| | - Rachel Faverzani Magnago
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências Ambientais. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Karine Modolon Zepon
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências Ambientais. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Luiz Alberto Kanis
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências da Saúde. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Onilda Santos da Silva
- Universidade Federal do Rio Grande do Sul - UFRGS. Instituto de Ciências Básicas da Saúde. Departamento de Microbiologia, Parasitologia e Imunologia. Rua Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil
| | - Josiane Somariva Prophiro
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências da Saúde. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil; Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências Ambientais. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil.
| |
Collapse
|
7
|
The Distribution of Dengue Virus Serotype in Quang Nam Province (Vietnam) during the Outbreak in 2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031285. [PMID: 35162303 PMCID: PMC8835360 DOI: 10.3390/ijerph19031285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023]
Abstract
Objectives: Quang Nam province in the Centre of Vietnam has faced an outbreak of dengue hemorrhagic fever (DHF) in 2018. Although DHF is a recurrent disease in this area, no epidemiological and microbiological reports on dengue virus serotypes have been conducted mainly due to lack of facilities for such a kind of advanced surveillance. The aim of this study was to detect different dengue virus serotypes in patients' blood samples. Design and Methods: Suspected cases living in Quang Nam province (Vietnam) and presenting clinical and hematological signs of dengue hemorrhagic fever were included in the study. The screening was performed, and the results were compared by using two methodologies: RT real-time PCR (RT-rPCR) and the Dengue NS1 rapid test. Results: From December 2018 to February 2019, looking both at RT-rPCR [+] and NS1 [+] methodologies, a total of 488 patients were screened and 336 were positive for dengue virus detection (74 children and 262 adults); 273 of these patients (81.3%) underwent viral serotype identification as follows: 12.82% (35/273) D1 serotype, 17.95% (49/273) D2, 0.37% (1/273) D3, 68.50 (187/283) D4, and 0.37% (1/273) D2+D4 serotypes. The RT-rPCR outcomes showed higher sensitivity during the first three days of infection compared to NS1 (92.3% vs. 89.7%). The NS1 increased sensitivity after the first 3 days whilst the RT-rPCR decreased. Conclusions: Advanced surveillance with dengue virus serotypes identification, if performed routinely, may help to predict and prevent further DHF epidemics based on the exposure of the different serotypes during different periods that lead to the intensification of disease severity as a consequence of antibody-dependent enhancement (ADE).
Collapse
|
8
|
Synthesis and antiviral evaluation of cytisine derivatives against dengue virus types 1 and 2. Bioorg Med Chem Lett 2021; 54:128437. [PMID: 34737087 DOI: 10.1016/j.bmcl.2021.128437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022]
Abstract
Dengue virus (DENV) causes about 50-100 million cases per year worldwide. However, there is still a big challenge in developing antiviral drugs against DENV infection. Some derivatives of alkaloid (-)-cytisine, like other alkaloid analogs, have been proposed for their antiviral potential. This study investigated antiviral activity and mechanisms of the cytisine derivatives, and discovered the structure-activity relationship against DENV. The antiviral assays were performed using one strain of DENV1 and DENV2, and two cell lines Vero E6 and A549. The structure-activity relationship of the effective compounds was also evaluated using combination of time-of-addition/removal assay and molecular docking. Compounds 3, 4, 12 (N-allylcytisine-3-thiocarbamide), 16, and 20 exhibited the high antiviral activity with IC50 values of lower than 3 μM against DENV1 and DENV2. Of them, the derivative 12 showed the highest antiviral activities against DENV1 (IC50 = 0.14 μM) and DENV-2 (IC50 = <0.1 μM), exhibiting the potent inhibition on virus attachment and entry stages. Meanwhile, the compounds 4 and 20 had a strong inhibition at the post-entry stage (IC50 = <0.1 μM). A correlation between the experimental pIC50 values and predicted pKi calculated by docking of compounds into DENV E protein was significant, correlating with the impact of compound 12 on the attachment stage, but compounds 4, and 20 on post-entry stage. The results provided the insight into the directions of synthetic modifications of starting (-)-cytisine as the inhibitors of DENV E protein at attachment and entry stages of DENV life cycle.
Collapse
|
9
|
Tsheten T, Clements ACA, Gray DJ, Gyeltshen K, Wangdi K. Medical practitioner's knowledge on dengue management and clinical practices in Bhutan. PLoS One 2021; 16:e0254369. [PMID: 34270594 PMCID: PMC8284660 DOI: 10.1371/journal.pone.0254369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Abstract
Background Dengue has emerged as a major public health problem in Bhutan, with increasing incidence and widening geographic spread over recent years. This study aimed to investigate the knowledge and clinical management of dengue among medical practitioners in Bhutan. Methods We administered a survey questionnaire to all practitioners currently registered under the Bhutan Medical and Health Council. The questionnaire contained items on four domains including transmission, clinical course and presentation, diagnosis and management, and surveillance and prevention of dengue. Participants were able to respond using an online Qualtrics survey, with the invitation and link distributed via email. Results A total of 97 respondents were included in the study (response rate: 12.7%), of which 61.86% were Health Assistants/Clinical Officers (HAs/COs) and 38.14% were medical doctors. The afternoon feeding behaviour of Aedes mosquito was correctly identified by only 24.7% of the respondents, and ~66.0% of them failed to identify lethargy as a warning sign for severe dengue. Knowledge on diagnosis using NS1 antigen and the clinical significance of elevated haematocrit for initial fluid replacement was strikingly low at 47.4% and 27.8% respectively. Despite dengue being a nationally notifiable disease, ~60% of respondents were not knowledgeable on the timing and type of cases to be reported. Respondent’s median score was higher for the surveillance and reporting domain, followed by their knowledge on transmission of dengue. Statistically significant factors associated with higher knowledge included respondents being a medical doctor, working in a hospital and experience of having diagnosed dengue. Conclusion The study revealed major gaps on knowledge and clinical management practices related to dengue in Bhutan. Physicians and health workers working in Basic Health Units need training and regular supervision to improve their knowledge on the care of dengue patients.
Collapse
Affiliation(s)
- Tsheten Tsheten
- Department of Global Health, Research School of Population Health, Australian National University, Canberra, Australia
- Royal Centre for Disease Control, Ministry of Health, Thimphu, Bhutan
- * E-mail:
| | - Archie C. A. Clements
- Faculty of Health Sciences, Curtin University, Perth, Australia
- Telethon Kids Institute, Nedlands, Australia
| | - Darren J. Gray
- Department of Global Health, Research School of Population Health, Australian National University, Canberra, Australia
| | | | - Kinley Wangdi
- Department of Global Health, Research School of Population Health, Australian National University, Canberra, Australia
| |
Collapse
|
10
|
Liu X, Zhang M, Cheng Q, Zhang Y, Ye G, Huang X, Zhao Z, Rui J, Hu Q, Frutos R, Chen T, Song T, Kang M. Dengue fever transmission between a construction site and its surrounding communities in China. Parasit Vectors 2021; 14:22. [PMID: 33407778 PMCID: PMC7787407 DOI: 10.1186/s13071-020-04463-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/05/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Due to an increase in mosquito habitats and the lack facilities to carry out basic mosquito control, construction sites in China are more likely to experience secondary dengue fever infection after importation of an initial infection, which may then increase the number of infections in the neighboring communities and the chance of community transmission. The aim of this study was to investigate how to effectively reduce the transmission of dengue fever at construction sites and the neighboring communities. METHODS The Susceptible-Exposed-Infectious/Asymptomatic-Recovered (SEIAR) model of human and SEI model of mosquitoes were developed to estimate the transmission of dengue virus between humans and mosquitoes within the construction site and within a neighboring community, as well between each of these. With the calibrated model, we further estimated the effectiveness of different intervention scenarios targeting at reducing the transmissibility at different locations (i.e. construction sites and community) with the total attack rate (TAR) and the duration of the outbreak (DO). RESULTS A total of 102 construction site-related and 131 community-related cases of dengue fever were reported in our area of study. Without intervention, the number of cases related to the construction site and the community rose to 156 (TAR: 31.25%) and 10,796 (TAR: 21.59%), respectively. When the transmission route from mosquitoes to humans in the community was cut off, the number of community cases decreased to a minimum of 33 compared with other simulated scenarios (TAR: 0.068%, DO: 60 days). If the transmission route from infectious mosquitoes in the community and that from the construction site to susceptible people on the site were cut off at the same time, the number of cases on the construction site dropped to a minimum of 74 (TAR: 14.88%, DO: 66 days). CONCLUSIONS To control the outbreak of dengue fever effectively on both the construction site and in the community, interventions needed to be made both within the community and from the community to the construction site. If interventions only took place within the construction site, the number of cases on the construction site would not be reduced. Also, interventions implemented only within the construction site or between the construction site and the community would not lead to a reduction in the number of cases in the community.
Collapse
Affiliation(s)
- Xingchun Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian People’s Republic of China
| | - Meng Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong People’s Republic of China
| | - Qu Cheng
- Division of Environmental Health Sciences School of Public Health, University of California, Berkeley, CA 94720 USA
| | - Yingtao Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong People’s Republic of China
| | - Guoqiang Ye
- Zhanjiang Municipal Center for Disease Control and Prevention, Zhanjiang, Guangdong People’s Republic of China
| | - Xiqing Huang
- Zhanjiang Municipal Center for Disease Control and Prevention, Zhanjiang, Guangdong People’s Republic of China
| | - Zeyu Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian People’s Republic of China
| | - Jia Rui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian People’s Republic of China
| | - Qingqing Hu
- Division of Public Health, School of Medicine, University of Utah, 201 Presidents Circle, Salt Lake City, UT 84112 USA
| | | | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian People’s Republic of China
| | - Tie Song
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong People’s Republic of China
| | - Min Kang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong People’s Republic of China
| |
Collapse
|
11
|
Tsheten T, Mclure A, Clements ACA, Gray DJ, Wangdi T, Wangchuk S, Wangdi K. Epidemiological Analysis of the 2019 Dengue Epidemic in Bhutan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18010354. [PMID: 33466497 PMCID: PMC7796457 DOI: 10.3390/ijerph18010354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022]
Abstract
Bhutan experienced its largest and first nation-wide dengue epidemic in 2019. The cases in 2019 were greater than the total number of cases in all the previous years. This study aimed to characterize the spatiotemporal patterns and effective reproduction number of this explosive epidemic. Weekly notified dengue cases were extracted from the National Early Warning, Alert, Response and Surveillance (NEWARS) database to describe the spatial and temporal patterns of the epidemic. The time-varying, temperature-adjusted cohort effective reproduction number was estimated over the course of the epidemic. The dengue epidemic occurred between 29 April and 8 December 2019 over 32 weeks, and included 5935 cases. During the epidemic, dengue expanded from six to 44 subdistricts. The effective reproduction number was <3 for most of the epidemic period, except for a ≈1 month period of explosive growth, coinciding with the monsoon season and school vacations, when the effective reproduction number peaked >30 and after which the effective reproduction number declined steadily. Interventions were only initiated 6 weeks after the end of the period of explosive growth. This finding highlights the need to reinforce the national preparedness plan for outbreak response, and to enable the early detection of cases and timely response.
Collapse
Affiliation(s)
- Tsheten Tsheten
- Research School of Population, Australian National University, Acton, Canberra, ACT 2601, Australia; (A.M.); (D.J.G.); (K.W.)
- Royal Centre for Disease Control, Ministry of Health, Thimphu 11001, Bhutan;
- Correspondence:
| | - Angus Mclure
- Research School of Population, Australian National University, Acton, Canberra, ACT 2601, Australia; (A.M.); (D.J.G.); (K.W.)
| | - Archie C. A. Clements
- Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia;
- Telethon Kids Institute, Nedlands, WA 6009, Australia
| | - Darren J. Gray
- Research School of Population, Australian National University, Acton, Canberra, ACT 2601, Australia; (A.M.); (D.J.G.); (K.W.)
| | - Tenzin Wangdi
- Vector-Borne Disease Control Program, Ministry of Health, Gelephu 31102, Bhutan;
| | - Sonam Wangchuk
- Royal Centre for Disease Control, Ministry of Health, Thimphu 11001, Bhutan;
| | - Kinley Wangdi
- Research School of Population, Australian National University, Acton, Canberra, ACT 2601, Australia; (A.M.); (D.J.G.); (K.W.)
| |
Collapse
|
12
|
Bhatt P, Sabeena SP, Varma M, Arunkumar G. Current Understanding of the Pathogenesis of Dengue Virus Infection. Curr Microbiol 2021; 78:17-32. [PMID: 33231723 PMCID: PMC7815537 DOI: 10.1007/s00284-020-02284-w] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022]
Abstract
The pathogenesis of dengue virus infection is attributed to complex interplay between virus, host genes and host immune response. Host factors such as antibody-dependent enhancement (ADE), memory cross-reactive T cells, anti-DENV NS1 antibodies, autoimmunity as well as genetic factors are major determinants of disease susceptibility. NS1 protein and anti-DENV NS1 antibodies were believed to be responsible for pathogenesis of severe dengue. The cytokine response of cross-reactive CD4+ T cells might be altered by the sequential infection with different DENV serotypes, leading to further elevation of pro-inflammatory cytokines contributing a detrimental immune response. Fcγ receptor-mediated antibody-dependent enhancement (ADE) results in release of cytokines from immune cells leading to vascular endothelial cell dysfunction and increased vascular permeability. Genomic variation of dengue virus and subgenomic flavivirus RNA (sfRNA) suppressing host immune response are viral determinants of disease severity. Dengue infection can lead to the generation of autoantibodies against DENV NS1antigen, DENV prM, and E proteins, which can cross-react with several self-antigens such as plasminogen, integrin, and platelet cells. Apart from viral factors, several host genetic factors and gene polymorphisms also have a role to play in pathogenesis of DENV infection. This review article highlights the various factors responsible for the pathogenesis of dengue and also highlights the recent advances in the field related to biomarkers which can be used in future for predicting severe disease outcome.
Collapse
Affiliation(s)
- Puneet Bhatt
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | | | - Muralidhar Varma
- Dept of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576101 India
| | - Govindakarnavar Arunkumar
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
- Present Address: WHO Country Office, Kathmandu, Nepal
| |
Collapse
|
13
|
Chen YP, Ho TS, Lee PC, Chang HH, Shieh GS, Lee CI, Hu WL, Hung YC. Effects of Chinese and Western Medicine on Patients with Dengue Fever. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:329-340. [PMID: 32138530 DOI: 10.1142/s0192415x20500160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dengue fever is an important epidemic disease with a high prevalence in tropical and subtropical countries. We aimed to investigate the effects of a treatment integrating traditional Chinese (TCM) and Western medicines on dengue inpatients with warning signs (i.e., group B) according to the World Health Organization dengue classification in this retrospective cohort study of medical records. Inpatients who were treated with conventional Western therapies in the absence or presence of TCM were assigned to the control and treatment groups, respectively. Data were compared using an analysis of variance, general linear analysis, and chi-square test. The most common clinical symptoms and signs of dengue fever were fever and muscle ache. The treatment group patients were significantly more likely to present general weakness and poor appetite than the control group patients. Patients in the treatment group were more likely to experience stomachache than those in the control group. Moreover, comparisons of the changes in hemoglobin and alanine aminotransferase levels over time revealed significant differences between the patient groups. Zhu Ye Shi Gao Tang, Gui Pi Tang, Paeonia suffruticosa, and Clerodendrum cyrtophyllum were the most commonly administered TCM formula and single herbs in this study. Patients in the treatment group experienced a resolution of symptoms, signs, and laboratory data and were discharged smoothly, without deterioration to death or critical care. Our findings suggest that the integration of TCM and Western medicine may yield an appropriate treatment for dengue fever.
Collapse
Affiliation(s)
- Yu-Pei Chen
- Department of Chinese Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan.,School of Medicine, National Cheng Kung University Tainan, Taiwan.,Department of Pharmacy, Chia Nan University of Pharmacy & Science, Tainan, Taiwan.,School of Chinese Medicine, China Medical University Taichung, Taiwan
| | - Tzong-Shiann Ho
- College of Medicine, National Cheng Kung University Tainan, Taiwan.,Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Po-Chang Lee
- School of Medicine, National Cheng Kung University Tainan, Taiwan.,National Health Insurance Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hen-Hong Chang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, and Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Gia-Shing Shieh
- Department of Urology, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-I Lee
- Department of Infection, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Wen-Long Hu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kaohsiung Medical University College of Medicine, Kaohsiung, Taiwan.,Fooyin University College of Nursing, Kaohsiung, Taiwan
| | - Yu-Chiang Hung
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Ferreira RCB, Papini S, Luchini LC, Vieira E. Persistence of malathion used in dengue control on household surfaces. ARQUIVOS DO INSTITUTO BIOLÓGICO 2019. [DOI: 10.1590/1808-1657000042018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT: Dengue is a viral infection transmitted by the mosquito Aedes aegypti. In Brazil, one of the insecticides used to control the mosquito is malathion, which can be diluted in vegetable oil (1:2 v/v). The purpose of this study was to understand the persistence of malathion on different surfaces and soil. Surfaces were contaminated by malathion and then washed with water and soap. The water used to clean the surfaces was extracted and analyzed by gas chromatography with an FID detector. Soil samples received malathion 14C-TG diluted in vegetable oil (1:2 v/v) and were analyzed zero, 3, 7, 18, 32, 60, 120, 240, and 360 days after the application in a liquid scintillation analyzer. Results showed a high persistence of malathion on porous surfaces. Moreover, it did not degrade in the soil for the first 120 days.
Collapse
|
15
|
Sabeena S, Chandrabharani K, Ravishankar N, Arunkumar G. Classification of dengue cases in Southwest India based on the WHO systems-a retrospective analysis. Trans R Soc Trop Med Hyg 2018; 112:479-485. [PMID: 30107616 DOI: 10.1093/trstmh/try080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/04/2018] [Indexed: 11/13/2022] Open
Abstract
Background The WHO dengue classification 1997 was revised in 2009 and the revised classification system has now been in use for the past decade. This study was carried out to compare the 1997 and revised classifications in assessing the severity of dengue infection among all age groups during a dengue outbreak in southwest India. Methodology This retrospective cross-sectional study was carried out including serologically confirmed dengue cases. A total of 1033 dengue cases were classified on the basis of the 1997 WHO classification and 2009 revised classification. The statistical analysis was carried out using SPSS 15.0 for Windows (SPSSTM Inc, Chicago, IL, USA). Results Both the 1997 and revised WHO classifications were applied to 1033 confirmed dengue cases, including 692 males (67%) and 341 females (33%). The median age of the study participants was 23 years (IQR 10-33), including 112 (10.8%) children at and below the age of 5 years. The level of agreement between the two systems of classification was poor (kappa=0.143, 0.055-0.198, p-value <0.001). Conclusion A greater sensitivity and specificity of the revised classification was observed in comparison with the 1997 WHO classification. In the context of changing dengue epidemiology and geographical expansion, the revised classification is helpful in the identification of severe cases, facilitating timely management.
Collapse
Affiliation(s)
- Sasidharanpillai Sabeena
- Manipal Centre for Virus Research, APEX Referral Laboratory for Arboviruses (NVBDCP), Manipal Academy of Higher Education, Manipal, Karnataka
| | - Kiran Chandrabharani
- Manipal Centre for Virus Research, APEX Referral Laboratory for Arboviruses (NVBDCP), Manipal Academy of Higher Education, Manipal, Karnataka
| | - Nagaraja Ravishankar
- Department of Statistics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Govindakarnavar Arunkumar
- Manipal Centre for Virus Research, APEX Referral Laboratory for Arboviruses (NVBDCP), Manipal Academy of Higher Education, Manipal, Karnataka
| |
Collapse
|
16
|
Lertjuthaporn S, Khowawisetsut L, Keawvichit R, Polsrila K, Chuansumrit A, Chokephaibulkit K, Thitilertdecha P, Onlamoon N, Ansari AA, Pattanapanyasat K. Identification of changes in dendritic cell subsets that correlate with disease severity in dengue infection. PLoS One 2018; 13:e0200564. [PMID: 30001408 PMCID: PMC6042784 DOI: 10.1371/journal.pone.0200564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) is the most prevalent arthropod-borne viral disease in humans. DENV causes a spectrum of illness ranging from mild to potentially severe complications. Dendritic cells (DCs) play a critical role in initiating and regulating highly effective antiviral immune response that include linking innate and adaptive immune responses. This study was conducted to comparatively characterize in detail the relative proportion, phenotypic changes, and maturation profile of subsets of both myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in children with dengue fever (DF), dengue hemorrhagic fever (DHF) and for purposes of control healthy individuals. The mDCs (Lin-CD11c+CD123lo), the pDCs (Lin-CD11c-CD123+) and the double negative (DN) subset (Lin-/HLA-DR+/CD11c-CD123-) were analyzed by polychromatic flow cytometry. The data were first analyzed on blood samples collected from DENV-infected patients at various times post-infection. Results showed that the relative proportion of mDCs were significantly decreased which was associated with an increase in disease severity in samples from DENV-infected patients. While there was no significant difference in the relative proportion of pDCs between healthy and DENV-infected patients, there was a marked increase in the DN subset. Analysis of the kinetics of changes of pDCs showed that there was an increase but only during the early febrile phase. Additionally, samples from patients during acute disease showed marked decreases in the relative proportion of CD141+ and CD16+ mDC subsets that were the major mDC subsets in healthy individuals. In addition, there was a significant decrease in the level of CD33-expressing mDCs in DENV patients. While the pDCs showed an up-regulation of maturation profile during acute DENV infection, the mDCs showed an alteration of maturation status. This study suggests that different relative proportion and phenotypic changes as well as alteration of maturation profile of DC subsets may play a critical role in the dengue pathogenesis and disease outcome.
Collapse
Affiliation(s)
- Sakaorat Lertjuthaporn
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rassamon Keawvichit
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Korakot Polsrila
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ampaiwan Chuansumrit
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattawat Onlamoon
- Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aftab A. Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kovit Pattanapanyasat
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
17
|
Zheng X, Chen H, Wang R, Fan D, Feng K, Gao N, An J. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV) Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice. Front Cell Infect Microbiol 2017; 7:175. [PMID: 28553618 PMCID: PMC5427067 DOI: 10.3389/fcimb.2017.00175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/24/2017] [Indexed: 01/19/2023] Open
Abstract
Dengue virus (DV) is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China.,Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
| | - Hui Chen
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Ran Wang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Dongying Fan
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Kaihao Feng
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Na Gao
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Jing An
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China.,Center of Epilepsy, Beijing Institute for Brain DisordersBeijing, China
| |
Collapse
|
18
|
Custódio KM, Oliveira JGD, Moterle D, Zepon KM, Prophiro JS, Kanis LA. A biodegradable device for the controlled release of Piper nigrum (Piperaceae) standardized extract to control Aedes aegypti (Diptera, Culicidae) larvae. Rev Soc Bras Med Trop 2017; 49:687-692. [PMID: 28001214 DOI: 10.1590/0037-8682-0340-2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION: The significant increase in dengue, Zika, and chikungunya and the resistance of the Aedes aegypti mosquito to major insecticides emphasize the importance of studying alternatives to control this vector. The aim of this study was to develop a controlled-release device containing Piper nigrum extract and to study its larvicidal activity against Aedes aegypti. METHODS: Piper nigrum extract was produced by maceration, standardized in piperine, and incorporated into cotton threads, which were inserted into hydrogel cylinders manufactured by the extrusion of carrageenan and carob. The piperine content of the extract and thread reservoirs was quantified by chromatography. The release profile from the device was assessed in aqueous medium and the larvicidal and residual activities of the standardized extract as well as of the controlled-release device were examined in Aedes aegypti larvae. RESULTS The standardized extract contained 580mg/g of piperine and an LC50 value of 5.35ppm (24h) and the 3 cm thread reservoirs contained 13.83 ± 1.81mg of piperine. The device showed zero-order release of piperine for 16 days. The P. nigrum extract (25ppm) showed maximum residual larvicidal activity for 10 days, decreasing progressively thereafter. The device had a residual larvicidal activity for up to 37 days. CONCLUSIONS: The device provided controlled release of Piper nigrum extract with residual activity for 37 days. The device is easy to manufacture and may represent an effective alternative for the control of Aedes aegypti larvae in small water containers.
Collapse
Affiliation(s)
- Kauê Muller Custódio
- Grupo de Pesquisa em Tecnologia Farmacêutica, Programa de Pós Graduação em Ciências da Saúde - Universidade do Sul de Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Joice Guilherme de Oliveira
- Grupo de Pesquisa em Imunoparasitologia, Programa de Pós Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Diego Moterle
- Grupo de Pesquisa em Tecnologia Farmacêutica, Programa de Pós Graduação em Ciências da Saúde - Universidade do Sul de Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Karine Modolon Zepon
- Grupo de Pesquisa em Tecnologia Farmacêutica, Programa de Pós Graduação em Ciências da Saúde - Universidade do Sul de Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Josiane Somariva Prophiro
- Grupo de Pesquisa em Imunoparasitologia, Programa de Pós Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Luiz Alberto Kanis
- Grupo de Pesquisa em Tecnologia Farmacêutica, Programa de Pós Graduação em Ciências da Saúde - Universidade do Sul de Santa Catarina, Tubarão, Santa Catarina, Brazil
| |
Collapse
|
19
|
Progress towards understanding the pathogenesis of dengue hemorrhagic fever. Virol Sin 2016; 32:16-22. [PMID: 27853992 PMCID: PMC6702245 DOI: 10.1007/s12250-016-3855-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/12/2016] [Indexed: 01/22/2023] Open
Abstract
Dengue virus (DENV) is a mosquito-borne virus belonging to the Flaviviridae family. There are 4 serotypes of DENV that cause human disease through transmission by mosquito vectors. DENV infection results in a broad spectrum of clinical symptoms, ranging from mild fever to dengue hemorrhagic fever (DHF), the latter of which can progress to dengue shock syndrome (DSS) and death. Researchers have made unremitting efforts over the last half-century to understand DHF pathogenesis. DHF is probably caused by multiple factors, such as virus-specific antibodies, viral antigens and host immune responses. This review summarizes the current progress of studies on DHF pathogenesis, which may provide important information for achieving effective control of dengue in the future.
Collapse
|
20
|
Smith DR. Waiting in the wings: The potential of mosquito transmitted flaviviruses to emerge. Crit Rev Microbiol 2016; 43:405-422. [PMID: 27800692 DOI: 10.1080/1040841x.2016.1230974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The sudden dramatic emergence of the mosquito transmitted flavivirus Zika virus has bought to the world's attention a relatively obscure virus that was previously only known to specialist researchers. The genus Flavivirus of the family Flaviviridae contains a number of well-known mosquito transmitted human pathogenic viruses including the dengue, yellow fever, Japanese encephalitis and West Nile viruses. However, the genus also contains a number of lesser known human pathogenic viruses transmitted by mosquitoes including Wesselsbron virus, Ilheus virus, St. Louis encephalitis virus and Usutu virus. This review summarizes our knowledge of these lesser known mosquito transmitted flaviviruses and highlights their potential to emerge.
Collapse
Affiliation(s)
- Duncan R Smith
- a Institute of Molecular Biosciences and Center for Emerging and Neglected Infectious Diseases, Mahidol University , Thailand
| |
Collapse
|
21
|
Swaminathan G, Thoryk EA, Cox KS, Smith JS, Wolf JJ, Gindy ME, Casimiro DR, Bett AJ. A Tetravalent Sub-unit Dengue Vaccine Formulated with Ionizable Cationic Lipid Nanoparticle induces Significant Immune Responses in Rodents and Non-Human Primates. Sci Rep 2016; 6:34215. [PMID: 27703172 PMCID: PMC5050434 DOI: 10.1038/srep34215] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/01/2016] [Indexed: 12/30/2022] Open
Abstract
Dengue virus has emerged as an important arboviral infection worldwide. As a complex pathogen, with four distinct serotypes, the development of a successful Dengue virus vaccine has proven to be challenging. Here, we describe a novel Dengue vaccine candidate that contains truncated, recombinant, Dengue virus envelope protein from all four Dengue virus serotypes (DEN-80E) formulated with ionizable cationic lipid nanoparticles (LNPs). Immunization studies in mice, Guinea pigs, and in Rhesus macaques, revealed that LNPs induced high titers of Dengue virus neutralizing antibodies, with or without co-administration or encapsulation of a Toll-Like Receptor 9 agonist. Importantly, LNPs were also able to boost DEN-80E specific CD4+ and CD8+ T cell responses. Cytokine and chemokine profiling revealed that LNPs induced strong chemokine responses without significant induction of inflammatory cytokines. In addition to being highly efficacious, the vaccine formulation proved to be well-tolerated, demonstrating no elevation in any of the safety parameters evaluated. Notably, reduction in cationic lipid content of the nanoparticle dramatically reduced the LNP's ability to boost DEN-80E specific immune responses, highlighting the crucial role for the charge of the LNP. Overall, our novel studies, across multiple species, reveal a promising tetravalent Dengue virus sub-unit vaccine candidate.
Collapse
Affiliation(s)
- Gokul Swaminathan
- Infectious Diseases and Vaccines, Merck Research Laboratories, Merck &Co., Inc., Kenilworth, NJ, USA
| | - Elizabeth A Thoryk
- Infectious Diseases and Vaccines, Merck Research Laboratories, Merck &Co., Inc., Kenilworth, NJ, USA
| | - Kara S Cox
- Infectious Diseases and Vaccines, Merck Research Laboratories, Merck &Co., Inc., Kenilworth, NJ, USA
| | - Jeffrey S Smith
- Pharmaceutical Sciences, Merck Research Laboratories, Merck &Co., Inc., Kenilworth, NJ, USA
| | - Jayanthi J Wolf
- Safety Assessment &Regulatory Affairs, Merck Research Laboratories, Merck &Co., Inc., Kenilworth, NJ, USA
| | - Marian E Gindy
- Pharmaceutical Sciences, Merck Research Laboratories, Merck &Co., Inc., Kenilworth, NJ, USA
| | - Danilo R Casimiro
- Infectious Diseases and Vaccines, Merck Research Laboratories, Merck &Co., Inc., Kenilworth, NJ, USA
| | - Andrew J Bett
- Infectious Diseases and Vaccines, Merck Research Laboratories, Merck &Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
22
|
|
23
|
Lin H, Liu T, Song T, Lin L, Xiao J, Lin J, He J, Zhong H, Hu W, Deng A, Peng Z, Ma W, Zhang Y. Community Involvement in Dengue Outbreak Control: An Integrated Rigorous Intervention Strategy. PLoS Negl Trop Dis 2016; 10:e0004919. [PMID: 27548481 PMCID: PMC4993447 DOI: 10.1371/journal.pntd.0004919] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/22/2016] [Indexed: 11/24/2022] Open
Abstract
Background An explosive outbreak of dengue fever occurred in Guangdong Province, China in 2014. A community-based integrated intervention was applied to control this outbreak in the capital city Guangzhou, where dengue epidemic was mainly caused by imported cases. Methodology/Principal Findings We used a time series generalized additive model based on meteorological factors to assess the effectiveness of this intervention. The results showed that there was significant reduction in mosquito density following the intervention, and there was a 70.47% (95% confidence interval: 66.07%, 74.88%) reduction in the reported dengue cases compared with the predicted cases after 12 days since the beginning of the intervention, we estimated that a total of 23,302 dengue cases were prevented. Conclusions This study suggests that an integrated dengue intervention program has significant effects to control a dengue outbreak in areas where dengue epidemic was mainly caused by imported dengue cases. Dengue fever, caused by any of the four dengue virus serotypes, is regarded as one of the most important arboviral diseases globally. Guangdong Province in south China has the highest dengue infestation level in mainland China. An explosive outbreak occurred in this province in 2014, with a total of 36,837 cases and 6 deaths being notified. A community-based integrated intervention program was implemented to control this outbreak in Guangzhou, the capital city of the province, where dengue epidemic was mainly caused by imported cases. It was estimated that a total of 3.3 million people and 272 million RMB were invested in this intervention. This study used a time series generalized additive model based on meteorological factors to evaluate the effectiveness of this intervention program. The analysis showed that there was significant reduction in mosquito density following the intervention (Breteau Index (BI) reduced from 10.88 to 2.11), and there was a 70.47% (95% confidence interval: 66.07%, 74.88%) reduction in the reported dengue cases compared with the predicted cases after 12 days since the beginning of the intervention. A total of 23,302 dengue cases were prevented due to the community-based intervention. This study suggests that an integrated dengue intervention program is effective to control a dengue outbreak in areas where dengue epidemic was mainly caused by imported dengue cases.
Collapse
Affiliation(s)
- Hualiang Lin
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Tao Liu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Tie Song
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Lifeng Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Jinyan Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Jianfeng He
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Haojie Zhong
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia
| | - Aiping Deng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Zhiqiang Peng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Wenjun Ma
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- * E-mail: (WM); (YZ)
| | - Yonghui Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- * E-mail: (WM); (YZ)
| |
Collapse
|
24
|
Roslan NS, Latif ZA, Dom NC. Dengue cases distribution based on land surface temperature and elevation. 2016 7TH IEEE CONTROL AND SYSTEM GRADUATE RESEARCH COLLOQUIUM (ICSGRC) 2016. [DOI: 10.1109/icsgrc.2016.7813307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
25
|
Guo YH, Lai SJ, Liu XB, Li GC, Yu HJ, Liu QY. Governmental supervision and rapid detection on dengue vectors: An important role for dengue control in China. Acta Trop 2016; 156:17-21. [PMID: 26739658 DOI: 10.1016/j.actatropica.2015.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/20/2015] [Accepted: 12/23/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND China experienced an unprecedented outbreak of dengue fever in 2014, the National Health and Family Planning Commission of the People's Republic of China (NHFPC) carried out a series of supervision work on integrated vector management (IVM), and Chinese Center for Disease Control and Prevention (China CDC) conducted a rapid detection on vector density in some areas with high dengue incidence. The goal of this study was to explain the effect of these actions, which play an important role for dengue control, and we wish to give a good example for dengue control in China, even in the world. METHODS Compare mosquito vector density with Breteau Index (BI) and dengue incidence after or along with control work vs. before. Data was entered and analyzed by Microsoft Excel 2007 and SPSS19.0. RESULTS Average value of BI from 22.82 in September dropped to 3.93 along with supervision and rapid detection. BI showed a significant decrease (paired sample t-test, t=3.061, P=0.018≺0.05). Dengue incidence decreased gradually along with supervision and rapid detection. CONCLUSIONS Supervised work on IVM by NHFPC and the rapid detection on dengue vector Aedes by China CDC promoted to cut down the dengue vector density, then reduced dengue incidence; both played an important role for dengue control throughout China in 2014.
Collapse
Affiliation(s)
- Yu-Hong Guo
- WHO Collaborating Centre for Vector Surveillance and Management, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Sheng-jie Lai
- Division of Infectious Diseases, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Department of Geography and Environment, University of Southampton, Southampton SO17 1BJ, UK
| | - Xiao-Bo Liu
- WHO Collaborating Centre for Vector Surveillance and Management, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Gui-Chang Li
- WHO Collaborating Centre for Vector Surveillance and Management, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Hong-Jie Yu
- Division of Infectious Diseases, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qi-Yong Liu
- WHO Collaborating Centre for Vector Surveillance and Management, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
26
|
Abstract
"Infectious diseases of poverty" (IDoP) describes infectious diseases that are more prevalent among poor and vulnerable populations, namely human immunodeficiency virus (HIV) infection, tuberculosis (TB), malaria, and neglected tropical diseases (NTDs). In 2013, 190,000 children died of HIV-related causes and there were 550,000 cases and 80,000 TB deaths in children. Children under age 5 account for 78% of malaria deaths annually. NTDs remain a public health challenge in low- and middle-income countries. This article provides an overview of the major IDoP that affect children. Clinicians must be familiar with the epidemiology and clinical manifestations to ensure prompt diagnosis and treatment.
Collapse
Affiliation(s)
- Caitlin Hansen
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Elijah Paintsil
- Department of Pediatrics, Yale University School of Medicine, 464 Congress Ave, New Haven, CT 06520, USA; Department of Pharmacology, Yale University School of Medicine, 464 Congress Avenue, New Haven, CT 06520, USA; Department of Public Health, Yale University School of Medicine, 464 Congress Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
27
|
Dengue Vaccines: A Perspective from the Point of View of Intellectual Property. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:9454-74. [PMID: 26274968 PMCID: PMC4555291 DOI: 10.3390/ijerph120809454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/02/2015] [Accepted: 08/05/2015] [Indexed: 12/28/2022]
Abstract
Dengue is a serious infectious disease and a growing public health problem in many tropical and sub-tropical countries. To control this neglected tropical disease (NTD), vaccines are likely to be the most cost-effective solution. This study analyzed dengue vaccines from both a historical and longitudinal perspective by using patent data, evaluating the geographic and time coverage of innovations, the primary patent holders, the network of cooperation and partnership for vaccine research and development (R &amp; D), the flow of knowledge and the technological domain involved. This study can be seen as an example of the use of patent information to inform policy discussions, strategic research planning, and technology transfer. The results show that 93% of patents were granted since 2000, the majority belonging to the United States and Europe, although the share of patents from developing countries has increased. Unlike another NTDs, there is great participation of private companies in R &amp; D of dengue vaccines and partnerships and collaboration between public and private companies. Finally, in this study, the main holders showed high knowledge absorption and generated capabilities. Therefore, this issue suggests that to overcome the difficulty of translational R &amp; D it is necessary to stimulate the generation of knowledge and relevant scientific research, to enable the productive sector to have the capacity to absorb knowledge, to turn it into innovation, and to articulate partnerships and collaboration.
Collapse
|