1
|
Zhao X, Shen M, Cui L, Liu C, Yu J, Wang G, Erdeljan M, Wang K, Chen S, Wang Z. Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China. Sci Rep 2024; 14:28792. [PMID: 39567587 PMCID: PMC11579394 DOI: 10.1038/s41598-024-80457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
Influenza poses a significant threat to the global economy and health. Inactivated virus vaccines were introduced in China for prevention in 2018. In this study, three pairs of hemagglutinin (HA) and neuraminidase (NA) gene sequences were obtained from three Swine influenza virus (IAV-S) inactivated vaccine strains that were marketed in China in 2018. Phylogenetic analysis was carried out with HA and NA gene sequences to investigate the relationship between vaccine use and virus genetic drift. The findings showed that the evolutionary rate of HA remained relatively stable from 2012 to 2017, with an average genetic distance of approximately 0.020731195. However, following the introduction of the swine influenza vaccine, there was a notable acceleration in the evolutionary rate of HA, accompanied by a significant increase in the genetic distance. In 2018, the value was 0.111750269, while in 2019 it was 0.176389393. In contrast, the evolution of NA was relatively smooth, with an average genetic distance of approximately 0.030386708. Finally, we demonstrated that commercial vaccines are weak neutralizers of wild strains through immunization experiments in animals. Thus, we have reason to believe that mutations in the virus favor virus evasion of vaccine immunity. Our findings suggest that vaccine use may significantly impact the evolution of the influenza virus by potentially stimulating mutations. The selection pressure of vaccine antibodies played a role in regulating the variation of IAV-S-H1N1.
Collapse
Affiliation(s)
- Xinkun Zhao
- School of Laboratory Animal& Shandong Laboratory Animal Center, Shandong First Medical University& Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Mingshuai Shen
- School of Laboratory Animal& Shandong Laboratory Animal Center, Shandong First Medical University& Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Li Cui
- Shandong animal husbandry association, Jinan, 250000, China
| | - Cun Liu
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), Jinan, 250100, China
| | - Jieshi Yu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Guisheng Wang
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), Jinan, 250100, China
| | - Mihajlo Erdeljan
- Department for veterinary medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, 21000, Serbia
| | - Kezhou Wang
- School of Laboratory Animal& Shandong Laboratory Animal Center, Shandong First Medical University& Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Shumin Chen
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), Jinan, 250100, China
| | - Zhao Wang
- School of Laboratory Animal& Shandong Laboratory Animal Center, Shandong First Medical University& Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China.
| |
Collapse
|
2
|
Koutsoumanis K, Allende A, Alvarez Ordoñez A, Bolton D, Bover‐Cid S, Chemaly M, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Skandamis P, Suffredini E, Fernandez Escamez P, Gonzales‐Barron U, Roberts H, Ru G, Simmons M, Cruz RB, Lourenço Martins J, Messens W, Ortiz‐Pelaez A, Simon AC, De Cesare A. Assessment on the efficacy of methods 2 to 5 and method 7 set out in Commission Regulation (EU) No 142/2011 to inactivate relevant pathogens when producing processed animal protein of porcine origin intended to feed poultry and aquaculture animals. EFSA J 2023; 21:e08093. [PMID: 37416785 PMCID: PMC10320699 DOI: 10.2903/j.efsa.2023.8093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
An assessment was conducted on the level of inactivation of relevant pathogens that could be present in processed animal protein of porcine origin intended to feed poultry and aquaculture animals when methods 2 to 5 and method 7, as detailed in Regulation (EU) No 142/2011, are applied. Five approved scenarios were selected for method 7. Salmonella Senftenberg, Enterococcus faecalis, spores of Clostridium perfringens and parvoviruses were shortlisted as target indicators. Inactivation parameters for these indicators were extracted from extensive literature search and a recent EFSA scientific opinion. An adapted Bigelow model was fitted to retrieved data to estimate the probability that methods 2 to 5, in coincidental and consecutive modes, and the five scenarios of method 7 are able to achieve a 5 log10 and a 3 log10 reduction of bacterial indicators and parvoviruses, respectively. Spores of C. perfringens were the indicator with the lowest probability of achieving the target reduction by methods 2 to 5, in coincidental and consecutive mode, and by the five considered scenarios of method 7. An expert knowledge elicitation was conducted to estimate the certainty of achieving a 5 log10 reduction of spores of C. perfringens considering the results of the model and additional evidence. A 5 log10 reduction of C. perfringens spores was judged: 99-100% certain for methods 2 and 3 in coincidental mode; 98-100% certain for method 7 scenario 3; 80-99% certain for method 5 in coincidental mode; 66-100% certain for method 4 in coincidental mode and for method 7 scenarios 4 and 5; 25-75% certain for method 7 scenario 2; and 0-5% certain for method 7 scenario 1. Higher certainty is expected for methods 2 to 5 in consecutive mode compared to coincidental mode.
Collapse
|
3
|
Haider N, Kock R, Zumla A, Lee SS. Consequences and global risks of highly pathogenic avian influenza outbreaks in poultry in the United Kingdom. Int J Infect Dis 2023; 129:162-164. [PMID: 36690141 DOI: 10.1016/j.ijid.2023.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Najmul Haider
- School of Life Sciences, Keele University, Keele, United Kingdom.
| | - Richard Kock
- The Royal Veterinary College, Camden, United Kingdom.
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London, London, United Kingdom; NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom.
| | - Shui Shan Lee
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong; International Society for Infectious Diseases, Brooklyn, USA.
| |
Collapse
|
4
|
Immune Escape Adaptive Mutations in Hemagglutinin Are Responsible for the Antigenic Drift of Eurasian Avian-Like H1N1 Swine Influenza Viruses. J Virol 2022; 96:e0097122. [PMID: 35916512 PMCID: PMC9400474 DOI: 10.1128/jvi.00971-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The continuous antigenic variation of influenza A viruses remains a major hurdle for vaccine selection; however, the molecular determinants and mechanisms of antigenic change remain largely unknown. In this study, two escape mutants were generated by serial passages of the Eurasian avian-like H1N1 swine influenza virus (EA H1N1 SIV) A/swine/Henan/11/2005 (HeN11) in the presence of two neutralizing monoclonal antibodies (mAbs) against the hemagglutinin (HA) protein, which were designated HeN11-2B6-P5 and HeN11-4C7-P8, respectively. The HeN11-2B6-P5 mutant simultaneously harbored the N190D and I230M substitutions in HA, whereas HeN11-4C7-P8 harbored the M269R substitution in HA (H3 numbering). The effects of each of these substitutions on viral antigenicity were determined by measuring the neutralization and hemagglutination inhibition (HI) titers with mAbs and polyclonal sera raised against the representative viruses. The results indicate that residues 190 and 269 are key determinants of viral antigenic variation. In particular, the N190D mutation had the greatest antigenic impact, as determined by the HI assay. Further studies showed that both HeN11-2B6-P5 and HeN11-4C7-P8 maintained the receptor-binding specificity of the parent virus, although the single mutation N190D decreased the binding affinity for the human-type receptor. The replicative ability in vitro of HeN11-2B6-P5 was increased, whereas that of HeN11-4C7-P8 was decreased. These findings extend our understanding of the antigenic evolution of influenza viruses under immune pressure and provide insights into the functional effects of amino acid substitutions near the receptor-binding site and the interplay among receptor binding, viral replication, and antigenic drift. IMPORTANCE The antigenic changes that occur continually in the evolution of influenza A viruses remain a great challenge for the effective control of disease outbreaks. Here, we identified three amino acid substitutions (at positions 190, 230, and 269) in the HA of EA H1N1 SIVs that determine viral antigenicity and result in escape from neutralizing monoclonal antibodies. All three of these substitutions have emerged in nature. Of note, residues 190 and 230 have synergistic effects on receptor binding and antigenicity. Our findings provide a better understanding of the functional effects of amino acid substitutions in HA and their consequences for the antigenic drift of influenza viruses.
Collapse
|
5
|
Prevalence, Genetics, and Evolutionary Properties of Eurasian Avian-Like H1N1 Swine Influenza Viruses in Liaoning. Viruses 2022; 14:v14030643. [PMID: 35337050 PMCID: PMC8953428 DOI: 10.3390/v14030643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Swine influenza virus (SIV) is an important zoonosis pathogen. The 2009 pandemic of H1N1 influenza A virus (2009/H1N1) highlighted the importance of the role of pigs as intermediate hosts. Liaoning province, located in northeastern China, has become one of the largest pig-farming areas since 2016. However, the epidemiology and evolutionary properties of SIVs in Liaoning are largely unknown. We performed systematic epidemiological and genetic dynamics surveillance of SIVs in Liaoning province during 2020. In total, 33,195 pig nasal swabs were collected, with an SIV detection rate of 2%. Our analysis revealed that multiple subtypes of SIVs are co-circulating in the pig population in Liaoning, including H1N1, H1N2 and H3N2 SIVs. Furthermore, 24 H1N1 SIVs were confirmed to belong to the EA H1N1 lineage and divided into two genotypes. The two genotypes were both triple reassortant, and the predominant one with polymerase, nucleoprotein (NP), and matrix protein (M) genes originating from 2009/H1N1; hemagglutinin (HA) and neuraminidase (NA) genes originating from EA H1N1; and the nonstructural protein (NS) gene originating from triple reassortant H1N2 (TR H1N2) was detected in Liaoning for the first time. According to our evolutionary analysis, the EA H1N1 virus in Liaoning will undergo further genome variation.
Collapse
|
6
|
Abstract
Globally swine influenza is one of the most important diseases of the pig industry, with various subtypes of swine influenza virus co-circulating in the field. Swine influenza can not only cause large economic losses for the pig industry but can also lead to epidemics or pandemics in the human population. We provide an overview of the pathogenic characteristics of the disease, diagnosis, risk factors for the occurrence on pig farms, impact on pigs and humans and methods to control it. This review is designed to promote understanding of the epidemiology of swine influenza which will benefit the control of the disease in both pigs and humans.
Collapse
Affiliation(s)
- Yin Li
- School of Veterinary Medicine, Murdoch University, Perth, WA Australia.,Commonwealth Scientific and Industrial Research Organisation, St. Lucia, QLD Australia
| | - Ian Robertson
- School of Veterinary Medicine, Murdoch University, Perth, WA Australia.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
7
|
Ding F, Li Y, Huang B, Edwards J, Cai C, Zhang G, Jiang D, Wang Q, Robertson ID. Infection and risk factors of human and avian influenza in pigs in south China. Prev Vet Med 2021; 190:105317. [PMID: 33744674 DOI: 10.1016/j.prevetmed.2021.105317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 11/19/2022]
Abstract
The coinfection of swine influenza (SI) strains and avian/human-source influenza strains in piggeries can contribute to the evolution of new influenza viruses with pandemic potential. This study analyzed surveillance data on SI in south China and explored the spatial predictor variables associated with different influenza infection scenarios in counties within the study area. Blood samples were collected from 7670 pigs from 534 pig farms from 2015 to 2017 and tested for evidence of infection with influenza strains from swine, human and avian sources. The herd prevalences for EA H1N1, H1N1pdm09, classic H1N1, HS-like H3N2, seasonal human H1N1 and avian influenza H9N2 were 88.5, 64.5, 60.3, 57.8, 12.9 and 10.3 %, respectively. Anthropogenic factors including detection frequency, chicken density, duck density, pig density and human population density were found to be better predictor variables for three influenza infection scenarios (infection with human strains, infection with avian strains, and coinfection with H9N2 avian strain and at least one swine strain) than were meteorological and geographical factors. Predictive risk maps generated for the four provinces in south China highlighted that the areas with a higher risk of the three infection scenarios were predominantly clustered in the delta area of the Pearl River in Guangdong province and counties surrounding Poyang Lake in Jiangxi province. Identification of higher risk areas can inform targeted surveillance for influenza in humans and pigs, helping public health authorities in designing risk-based SI control strategies to address the pandemic influenza threat in south China.
Collapse
Affiliation(s)
- Fangyu Ding
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yin Li
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia; China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Baoxu Huang
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia; China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - John Edwards
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia; China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Chang Cai
- Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Guihong Zhang
- South China Agriculture University, Guangzhou, Guangdong, China
| | - Dong Jiang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Land & Resources, Beijing, 100101, China.
| | - Qian Wang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ian D Robertson
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia; China-Australia Joint Research and Training Centre for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
8
|
A Single Amino Acid at Position 431 of the PB2 Protein Determines the Virulence of H1N1 Swine Influenza Viruses in Mice. J Virol 2020; 94:JVI.01930-19. [PMID: 31996432 PMCID: PMC7108842 DOI: 10.1128/jvi.01930-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/20/2020] [Indexed: 11/20/2022] Open
Abstract
The frequent reassortment among different influenza viruses in pigs adds complexity to the epidemiology of swine influenza. The diverse viral virulence phenotypes underline the need to investigate the possible genetic determinants for evaluating the pandemic potential to human public health. Here, we found that multiple genotypes of influenza viruses cocirculate in the swine population in Liaoning Province, China. Furthermore, we pinpointed a single amino acid at position 431 in the PB2 protein which plays a critical role in the virulence of H1N1 viruses in mice and found that the alteration of viral polymerase activities is the cause of the different virulence. Our study further indicated that the virulence of influenza virus is a polygenic trait, and the newly identified virulence-related residue in the PB2 provides important information for broadening knowledge on the genetic basis of viral virulence of influenza viruses. Genetic reassortments occurred continuously among multiple subtypes or genotypes of influenza viruses prevalent in pigs. Of note, some reassortant viruses bearing the internal genes of the 2009 pandemic H1N1 (2009/H1N1) virus sporadically caused human infection, which highlights their potential threats to human public health. In this study, we performed phylogenetic analysis on swine influenza viruses (SIVs) circulating in Liaoning Province, China. A total of 22 viruses, including 18 H1N1 and 4 H1N2 viruses, were isolated from 5,750 nasal swabs collected from pigs in slaughterhouses from 2014 to 2016. H1N1 viruses formed four genotypes, which included Eurasian avian-like H1N1 (EA H1N1) and double/triple reassortant H1N1 derived from EA H1N1, 2009/H1N1, and triple reassortant H1N2 (TR H1N2) viruses. H1N1 SIVs with different genotypes and even those within the same genotypes represented different pathogenicities in mice. We further characterized two naturally isolated H1N1 SIVs that had similar viral genomes but differed substantially in their virulence in mice and found that a single amino acid at position 431 in the basic polymerase 2 (PB2) protein significantly affected the viral replication capacity and virulence of these two viruses. Taken together, our findings revealed the diverse genomic origins and virulence of the SIVs prevalent in Liaoning Province during 2014 to 2016, which highlights that continuous surveillance is essential to monitor the evolution of SIVs. We identified a naturally occurring amino acid mutation in the PB2 protein of H1N1 SIVs that impacts the viral replication and virulence in mice by altering the viral polymerase activity. IMPORTANCE The frequent reassortment among different influenza viruses in pigs adds complexity to the epidemiology of swine influenza. The diverse viral virulence phenotypes underline the need to investigate the possible genetic determinants for evaluating the pandemic potential to human public health. Here, we found that multiple genotypes of influenza viruses cocirculate in the swine population in Liaoning Province, China. Furthermore, we pinpointed a single amino acid at position 431 in the PB2 protein which plays a critical role in the virulence of H1N1 viruses in mice and found that the alteration of viral polymerase activities is the cause of the different virulence. Our study further indicated that the virulence of influenza virus is a polygenic trait, and the newly identified virulence-related residue in the PB2 provides important information for broadening knowledge on the genetic basis of viral virulence of influenza viruses.
Collapse
|
9
|
Zhao Y, Sun F, Li L, Chen T, Cao S, Ding G, Cong F, Liu J, Qin L, Liu S, Xiao Y. Evolution and Pathogenicity of the H1 and H3 Subtypes of Swine Influenza Virus in Mice between 2016 and 2019 in China. Viruses 2020; 12:v12030298. [PMID: 32182849 PMCID: PMC7150921 DOI: 10.3390/v12030298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 02/08/2023] Open
Abstract
Pigs are considered a “mixing vessel” that can produce new influenza strains through genetic reassortments, which pose a threat to public health and cause economic losses worldwide. The timely surveillance of the epidemiology of the swine influenza virus is of importance for prophylactic action. In this study, 15 H1N1, one H1N2, and four H3N2 strains were isolated from a total of 4080 nasal swabs which were collected from 20 pig farms in three provinces in China between 2016 and 2019. All the isolates were clustered into four genotypes. A new genotype represented by the H1N2 strain was found, whose fragments came from the triple reassortant H1N2 lineage, classical swine influenza virus (cs-H1N1) lineage, and 2009 H1N1 pandemic virus lineage. A/Sw/HB/HG394/2018(H1N1), which was clustered into the cs-H1N1 lineage, showed a close relationship with the 1918 pandemic virus. Mutations determining the host range specificity were found in the hemagglutinin of all isolates, which indicated that all the isolates had the potential for interspecies transmission. To examine pathogenicity, eight isolates were inoculated into 6-week-old female BALB/c mice. The isolates replicated differently, producing different viral loadings in the mice; A/Swine/HB/HG394/2018(H1N1) replicated the most efficiently. This suggested that the cs-H1N1 reappeared, and more attention should be given to the new pandemic to pigs. These results indicated that new reassortments between the different strains occurred, which may increase potential risks to human health. Continuing surveillance is imperative to monitor swine influenza A virus evolution.
Collapse
Affiliation(s)
- Yuzhong Zhao
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Fachao Sun
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Li Li
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Ting Chen
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao 266100, China; (T.C.); (L.Q.)
| | - Shengliang Cao
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Guofei Ding
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Fangyuan Cong
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Jiaqi Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Liting Qin
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao 266100, China; (T.C.); (L.Q.)
| | - Sidang Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Yihong Xiao
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
10
|
Pulit-Penaloza JA, Belser JA, Tumpey TM, Maines TR. Mammalian pathogenicity and transmissibility of a reassortant Eurasian avian-like A(H1N1v) influenza virus associated with human infection in China (2015). Virology 2019; 537:31-35. [PMID: 31430632 PMCID: PMC9608380 DOI: 10.1016/j.virol.2019.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 11/29/2022]
Abstract
Swine-origin (variant) H1 influenza A viruses associated with numerous human infections in North America in recent years have been extensively studied in vitro and in mammalian models to determine their pandemic potential. However, limited information is available on Eurasian avian-like lineage variant H1 influenza viruses. In 2015, A/Hunan/42443/2015 virus was isolated from a child in China with a severe infection. Molecular analysis revealed that this virus possessed several key virulence and human adaptation markers. Similar to what was previously observed in C57BL/6J mice, we report here that in the BALB/c mouse model, A/Hunan/42443/2015 virus caused more severe morbidity and higher mortality than did North American variant H1 virus isolates. Furthermore, the virus efficiently replicated throughout the respiratory tract of ferrets and exhibited a capacity for transmission in this model, underscoring the need to monitor zoonotic viruses that cross the species barrier as they continue to pose a pandemic threat.
Collapse
Affiliation(s)
- Joanna A Pulit-Penaloza
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.
| |
Collapse
|
11
|
Substitution of D701N in the PB2 protein could enhance the viral replication and pathogenicity of Eurasian avian-like H1N1 swine influenza viruses. Emerg Microbes Infect 2018; 7:75. [PMID: 29717109 PMCID: PMC5931605 DOI: 10.1038/s41426-018-0073-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/03/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses (SIVs) have become predominant in pig populations in China and have recently been reported to have the most potential to raise the next pandemic in humans. The mutation D701N in the PB2 protein, which accounts for 31% of H1N1 SIVs, has previously been shown to contribute to the adaptation of the highly pathogenic H5N1 or H7N7 avian influenza viruses in mammals. However, little is known of the effects of this substitution on the EA H1N1 viruses. Herein, we investigated the contributions of 701N in the PB2 protein to an EA H1N1 SIV (A/Hunan/42443/2015(H1N1), HuN EA-H1N1), which had 701D in the PB2 protein. Our results found that viral polymerase activity, viral replication, and pathogenicity in mice were indeed enhanced due to the introduction of 701N into the PB2 protein, and the increased viral growth was partly mediated by the host factor importin-α7. Thus, substantial attention should be paid to the D701N mutation in pig populations.
Collapse
|
12
|
Wang Q, Wang SY, Zhang P, Liu XM, Yu LX, Shan TL, Tong W, Zhou YJ, Li GX, Zheng H, Gao F, Jiang YF, Kong N, Li LW, Tong GZ, Yu H. Monoclonal Antibody Against HA Protein of the European Avian-Like H1N1 Swine Influenza Virus. Monoclon Antib Immunodiagn Immunother 2018; 37:69-72. [PMID: 29630477 DOI: 10.1089/mab.2017.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purified whole-virus proteins derived from A/swine/Shanghai/1/2014 (H1N1) (SH1) were chosen to immunize BALB/c mice to prepare the monoclonal antibody (MAb) against hemagglutinin (HA) protein of an European avian-like (EA) H1N1 swine influenza virus (SIV). After cloning three times by limiting dilution, one strain of hybridoma cells named 3C7 secreting anti-HA protein MAb was obtained by hybridoma technique. The results of indirect immunofluorescence assay and western blot analyses showed that the MAb 3C7 specifically reacted with the HA protein of EA H1N1 SIV. This work indicated that the MAb 3C7 would be a valuable tool as a specific diagnostic reagent for SIV epidemiological surveys and identification of HA protein epitopes of the EA H1N1 SIVs in the future.
Collapse
Affiliation(s)
- Qi Wang
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shuai-Yong Wang
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Peng Zhang
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiao-Min Liu
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ling-Xue Yu
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Tong-Ling Shan
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yan-Jun Zhou
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guo-Xin Li
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hao Zheng
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fei Gao
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yi-Feng Jiang
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ning Kong
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Li-Wei Li
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guang-Zhi Tong
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China .,2 Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai, China
| | - Hai Yu
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China .,2 Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai, China .,3 Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, China
| |
Collapse
|
13
|
Deecke L, Dobrovolny HM. Intermittent treatment of severe influenza. J Theor Biol 2018; 442:129-138. [PMID: 29355540 DOI: 10.1016/j.jtbi.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/30/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022]
Abstract
Severe, long-lasting influenza infections are often caused by new strains of the virus. The long duration of these infections leads to an increased opportunity for the emergence of drug resistant mutants. This is particularly problematic since for new strains there is often no vaccine, so drug treatment is the first line of defense. One strategy for trying to minimize drug resistance is to apply drugs periodically. During treatment phases the wild-type virus decreases, but resistant virus might increase; when there is no treatment, wild-type virus will hopefully out-compete the resistant virus, driving down the number of resistant virus. A stochastic model of severe influenza is combined with a model of drug resistance to simulate long-lasting infections and intermittent treatment with two types of antivirals: neuraminidase inhibitors, which block release of virions; and adamantanes, which block replication of virions. Each drug's ability to reduce emergence of drug resistant mutants is investigated. We find that cell regeneration is required for successful implementation of intermittent treatment and that the optimal cycling parameters change with regeneration rate.
Collapse
Affiliation(s)
- Lucas Deecke
- Institut für Theoretische Physik, Universität zu Köln, Cologne, Germany
| | - Hana M Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
14
|
Wu Y, Yang D, Xu B, Liang W, Sui J, Chen Y, Yang H, Chen H, Wei P, Qiao C. Immune efficacy of an adenoviral vector-based swine influenza vaccine against antigenically distinct H1N1 strains in mice. Antiviral Res 2017; 147:29-36. [PMID: 28941982 DOI: 10.1016/j.antiviral.2017.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 01/24/2023]
Abstract
Avian-like H1N1 swine influenza viruses are prevalent in pigs and have occasionally crossed the species barrier and infected humans, which highlights the importance of preventing swine influenza. Human adenovirus serotype 5 (Ad5) has been tested in human influenza vaccine clinical trials and has exhibited a reliable safety profile. Here, we generated a replication-defective, recombinant adenovirus (designated as rAd5-avH1HA) expressing the hemagglutinin gene of an avian-like H1N1 virus (A/swine/Zhejiang/199/2013, ZJ/199/13). Using a BALB/c mouse model, we showed that a two-dose intramuscular administration of recombinant rAd5-avH1HA induced high levels of hemagglutination inhibition antibodies and prevented homologous and heterologous H1N1 virus-induced weight loss, as well as viral replication in the nasal turbinates and lungs of mice. Furthermore, a prime-boost immunization strategy trial with a recombinant plasmid (designated as pCAGGS-HA) followed by rAd5-avH1HA vaccine provided effective protection against homologous and heterologous H1N1 virus infection in mice. These results indicate that rAd5-avH1HA is an efficacious genetically engineered vaccine candidate against H1N1 swine influenza. Future studies should examine its immune efficacy in pigs.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/immunology
- Cross Protection
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/standards
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Swine
- Swine Diseases/prevention & control
- Turbinates/virology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Virus Shedding
Collapse
Affiliation(s)
- Yunpu Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dawei Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Bangfeng Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wenhua Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jinyu Sui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Huanliang Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ping Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Chuanling Qiao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
15
|
Characterization of Monoclonal Antibodies against HA Protein of H1N1 Swine Influenza Virus and Protective Efficacy against H1 Viruses in Mice. Viruses 2017; 9:v9080209. [PMID: 28786930 PMCID: PMC5580466 DOI: 10.3390/v9080209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/30/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023] Open
Abstract
H1N1 swine influenza viruses (SIV) are prevalent in pigs globally, and occasionally emerge in humans, which raises concern about their pandemic threats. To stimulate hemagglutination (HA) of A/Swine/Guangdong/LM/2004 (H1N1) (SW/GD/04) antibody response, eukaryotic expression plasmid pCI-neo-HA was constructed and used as an immunogen to prepare monoclonal antibodies (mAbs). Five mAbs (designed 8C4, 8C6, 9D6, 8A4, and 8B1) against HA protein were obtained and characterized. Western blot showed that the 70 kDa HA protein could be detected by all mAbs in MDCK cells infected with SW/GD/04. Three mAbs—8C4, 8C6, and 9D6—have hemagglutination inhibition (HI) and neutralization test (NT) activities, and 8C6 induces the highest HI and NT titers. The protection efficacy of 8C6 was investigated in BALB/c mice challenged with homologous or heterologous strains of the H1 subtype SIV. The results indicate that mAb 8C6 protected the mice from viral infections, especially the homologous strain, which was clearly demonstrated by the body weight changes and reduction of viral load. Thus, our findings document for the first time that mAb 8C6 might be of potential therapeutic value for H1 subtype SIV infection.
Collapse
|
16
|
Ge Y, Yao QC, Wang XF, Fan ZQ, Deng GH, Chai HL, Chen HL, Hua YP. Epidemic of wild-origin H1NX avian influenza viruses in Anhui, China. Infect Dis Poverty 2017; 6:98. [PMID: 28669354 PMCID: PMC5494855 DOI: 10.1186/s40249-017-0304-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/13/2017] [Indexed: 01/21/2023] Open
Abstract
Background As the natural hosts of avian influenza viruses (AIVs), aquatic and migratory birds provide a gene pool for genetic transfer among species and across species, forming transient “genome constellations.” This work describes the phylogenetic dynamics of H1NX based on the complete molecular characterization of eight genes of viruses that were collected from 2014 to 2015 in Anhui Province, China. Methods Hemagglutination and hemagglutination inhibition tests were used to determine the hemagglutination (HA) activity of the HA subtypes. The entire genomes of the viruses were sequenced on an ABI PRISM 3500xl DNA Analyzer. The sequences were genetically analysed to study their genetic evolution using DNASTAR and MEGA 6. The pathogenic effects of the viruses were evaluated using mouse infection models. Results Seven strains of the H1 subtype avian influenza virus were isolated. Phylogenetic analysis indicated natural recombination of the H1 influenza viruses between the Eurasian lineage and the North American lineage. Some genes had high sequence identity with A/bean goose/Korea/220/2011(H9N2), which is a typical case involving viral reassortment between the Eurasian lineage and the North American lineage. The results of infection experiments in mice showed that the viruses could acquire the ability to multiply in mouse respiratory organs without adaptation. Conclusions These findings suggest that continued surveillance of wild birds, particularly migratory birds, is important to provide early warning of possible H1 influenza epidemics and to understand the ecology of the virus. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0304-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Ge
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiu-Cheng Yao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xian-Fu Wang
- Natural Protection & Management Station of Forestry Department Centre of Anhui Province, Hefei, Anhui Province, China
| | - Zhi-Qiang Fan
- School of Life Sciences, Anqing Normal University, Anqing, Anhui Province, China
| | - Guo-Hua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Hong-Liang Chai
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China.
| | - Hua-Lan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu-Ping Hua
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China.
| |
Collapse
|
17
|
Le TB, Lee IH, Kim BJ, Kim HS, Seo SH. Detection and pathogenesis of a novel swine H3N2 influenza virus containing three genes from the 2009 pandemic H1N1 influenza viruses in Korea in 2015. Virol Sin 2017; 31:513-516. [PMID: 27853991 DOI: 10.1007/s12250-016-3848-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Tran Bac Le
- Laboratory of Influenza Research, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
- Institute of Influenza Virus, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - In Hong Lee
- Laboratory of Influenza Research, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
- Institute of Influenza Virus, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Byung Jun Kim
- Laboratory of Influenza Research, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
- Institute of Influenza Virus, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyun Soo Kim
- Laboratory of Public Health, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sang Heui Seo
- Laboratory of Influenza Research, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
- Institute of Influenza Virus, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
18
|
Sánchez-Betancourt JI, Cervantes-Torres JB, Saavedra-Montañez M, Segura-Velázquez RA. Complete genome sequence of a novel influenza A H1N2 virus circulating in swine from Central Bajio region, Mexico. Transbound Emerg Dis 2017; 64:2083-2092. [PMID: 28181421 DOI: 10.1111/tbed.12620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 11/29/2022]
Abstract
The aim of this study was to perform the complete genome sequence of a swine influenza A H1N2 virus strain isolated from a pig in Guanajuato, México (A/swine/Mexico/GtoDMZC01/2014) and to report its seroprevalence in 86 counties at the Central Bajio zone. To understand the evolutionary dynamics of the isolate, we undertook a phylogenetic analysis of the eight gene segments. These data revealed that the isolated virus is a reassortant H1N2 subtype, as its genes are derived from human (HA, NP, PA) and swine (M, NA, PB1, PB2 and NS) influenza viruses. Pig serum samples were analysed by the hemagglutination inhibition test, using wild H1N2 and H3N2 strains (A/swine/México/Mex51/2010 [H3N2]) as antigen sources. Positive samples to the H1N2 subtype were processed using the field-isolated H1N1 subtype (A/swine/México/Ver37/2010 [H1N1]). Seroprevalence to the H1N2 subtype was 26.74% in the sampled counties, being Jalisco the state with highest seroprevalence to this subtype (35.30%). The results herein reported demonstrate that this new, previously unregistered influenza virus subtype in México that shows internal genes from other swine viral subtypes isolated in the past 5 years, along with human virus-originated genes, is widely distributed in this area of the country.
Collapse
Affiliation(s)
- J I Sánchez-Betancourt
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, CP, 04510, México
| | - J B Cervantes-Torres
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, CP, 04510, México
| | - M Saavedra-Montañez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, CP, 04510, México
| | - R A Segura-Velázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, CP, 04510, México
| |
Collapse
|
19
|
Sui J, Yang D, Qiao C, Xu H, Xu B, Wu Y, Yang H, Chen Y, Chen H. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice. Vaccine 2016; 34:3757-63. [DOI: 10.1016/j.vaccine.2016.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 12/09/2022]
|
20
|
Peng X, Wu H, Xu L, Peng X, Cheng L, Jin C, Xie T, Lu X, Wu N. Molecular characterization of a novel reassortant H1N2 influenza virus containing genes from the 2009 pandemic human H1N1 virus in swine from eastern China. Virus Genes 2016; 52:405-10. [PMID: 26980674 DOI: 10.1007/s11262-016-1303-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/13/2016] [Indexed: 11/28/2022]
Abstract
Pandemic outbreaks of H1N1 swine influenza virus have been reported since 2009. Reassortant H1N2 viruses that contain genes from the pandemic H1N1 virus have been isolated in Italy and the United States. However, there is limited information regarding the molecular characteristics of reassortant H1N2 swine influenza viruses in eastern China. Active influenza surveillance programs in Zhejiang Province identified a novel H1N2 influenza virus isolated from pigs displaying clinical signs of influenza virus infection. Whole-genome sequencing was performed and this strain was compared with other influenza viruses available in GenBank. Phylogenetic analysis suggested that the novel strain contained genes from the 2009 pandemic human H1N1 and swine H3N2 viruses. BALB/c mice were infected with the isolated virus to assess its virulence in mice. While the novel H1N2 isolate replicated well in mice, it was found to be less virulent. These results provide additional evidence that swine serve as intermediate hosts or 'mixing vessels' for novel influenza viruses. They also emphasize the importance of surveillance in the swine population for use as an early warning system for influenza outbreaks in swine and human populations.
Collapse
Affiliation(s)
- Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Lihua Xu
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, Zhejiang, China
| | - Xiaorong Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Tiansheng Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
21
|
Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health. Microb Pathog 2015; 89:62-72. [PMID: 26344393 DOI: 10.1016/j.micpath.2015.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/21/2022]
Abstract
Influenza A virus (IAV) is characterized by eight single-stranded, negative sense RNA segments, which allows for gene reassortment among different IAV subtypes when they co-infect a single host cell simultaneously. Genetic reassortment is an important way to favor the evolution of influenza virus. Novel reassortant virus may pose a pandemic among humans. In history, three human pandemic influenza viruses were caused by genetic reassortment between avian, human and swine influenza viruses. Since 2009, pandemic (H1N1) 2009 (pdm/09 H1N1) influenza virus composed of two swine influenza virus genes highlighted the genetic reassortment again. Due to wide host species and high transmission of the pdm/09 H1N1 influenza virus, many different avian, human or swine influenza virus subtypes may reassert with it to generate novel reassortant viruses, which may result in a next pandemic among humans. So, it is necessary to understand the potential threat of current reassortant viruses between the pdm/09 H1N1 and other influenza viruses to public health. This study summarized the status of the reassortant viruses between the pdm/09 H1N1 and other influenza viruses of different species origins in natural and experimental conditions. The aim of this summarization is to facilitate us to further understand the potential threats of novel reassortant influenza viruses to public health and to make effective prevention and control strategies for these pathogens.
Collapse
|
22
|
Beggs NF, Dobrovolny HM. Determining drug efficacy parameters for mathematical models of influenza. JOURNAL OF BIOLOGICAL DYNAMICS 2015; 9 Suppl 1:332-346. [PMID: 26056712 DOI: 10.1080/17513758.2015.1052764] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Antivirals are the first line of defence against influenza, so drug efficacy should be re-evaluated for each new strain. However, due to the time and expense involved in assessing the efficacy of drug treatments both in vitro and in vivo, treatment regimens are largely not re-evaluated even when strains are found to be resistant to antivirals. Mathematical models of the infection process can help in this assessment, but for accurate model predictions, we need to measure model parameters characterizing the efficacy of antivirals. We use computer simulations to explore whether in vitro experiments can be used to extract drug efficacy parameters for use in viral kinetics models. We find that the efficacy of neuraminidase inhibitors can be determined by measuring viral load during a single cycle assay, while the efficacy of adamantanes can be determined by measuring infected cells during the preparation stage for the single cycle assay.
Collapse
Affiliation(s)
- Noah F Beggs
- a Department of Biology , Hendrix College , Conway , AR , USA
| | | |
Collapse
|