1
|
Wang H. Practical updates in clinical antiviral resistance testing. J Clin Microbiol 2024; 62:e0072823. [PMID: 39051778 PMCID: PMC11323466 DOI: 10.1128/jcm.00728-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
The laboratory diagnosis of antiviral resistance is a quickly changing field due to new drug availability, the sunsetting of older drugs, the development of novel technologies, rapid viral evolution, and the financial/logistic pressures of the clinical laboratory. This mini-review summarizes the current state of clinically available antiviral resistance testing in the United States in 2024, covering the most commonly used test methods, mechanisms, and clinical indications for herpes simplex virus, cytomegalovirus, human immunodeficiency virus, influenza, hepatitis B virus, and hepatitis C virus drug resistance testing. Common themes include the move away from phenotypic to genotypic methods for first-line clinical testing, as well as uncertainty surrounding the clinical meaningfulness of minority variant detection as next-generation sequencing methods have become more commonplace.
Collapse
Affiliation(s)
- Hannah Wang
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Vashisht A, Mondal AK, Vashisht V, Ananth S, Alptekin A, Jones K, Farmaha JK, Kolhe R. Enhancing Precision in HIV Treatment: Validation of a Robust Next-Generation Sequencing System for Drug Resistance Mutation Analysis. Diagnostics (Basel) 2024; 14:1766. [PMID: 39202254 PMCID: PMC11353995 DOI: 10.3390/diagnostics14161766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Multidrug-resistant HIV strains challenge treatment efficacy and increase mortality rates. Next-generation sequencing (NGS) technology swiftly detects variants, facilitating personalized antiretroviral therapy. AIM This study aimed to validate the Vela Diagnostics NGS platform for HIV drug resistance mutation analysis, rigorously assessed with clinical samples and CAP proficiency testing controls previously analyzed by Sanger sequencing. METHOD The experimental approach involved the following: RNA extraction from clinical specimens, reverse transcription polymerase chain reaction (RT-PCR) utilizing the Sentosa SX 101 platform, library preparation with the Sentosa SQ HIV Genotyping Assay, template preparation, sequencing using the Sentosa SQ301 instrument, and subsequent data analysis employing the Sentosa SQ Suite and SQ Reporter software. Drug resistance profiles were interpreted using the Stanford HIV Drug Resistance Database (HIVdb) with the HXB2 reference sequence. RESULTS The Vela NGS system successfully identified a comprehensive array of drug resistance mutations across the tested samples: 28 nucleoside reverse transcriptase inhibitors (NRTI), 25 non-nucleoside reverse transcriptase inhibitors (NNRTI), 25 protease inhibitors (PI), and 10 integrase gene-specific variants. Dilution experiments further validated the system's sensitivity, detecting drug resistance mutations even at viral loads lower than the recommended threshold (1000 copies/mL) set by Vela Diagnostics. SCOPE This study underscores the validation and clinical applicability of the Vela NGS system, and its implementation may offer clinicians enhanced precision in therapeutic decision-making for individuals living with HIV.
Collapse
Affiliation(s)
- Ashutosh Vashisht
- Georgia Esoteric and Molecular Biology Laboratory, Department of Pathology, Augusta University, Augusta, GA 30912, USA; (A.V.); (A.K.M.); (V.V.); (S.A.); (A.A.); (K.J.); (J.K.F.)
| | - Ashis K. Mondal
- Georgia Esoteric and Molecular Biology Laboratory, Department of Pathology, Augusta University, Augusta, GA 30912, USA; (A.V.); (A.K.M.); (V.V.); (S.A.); (A.A.); (K.J.); (J.K.F.)
| | - Vishakha Vashisht
- Georgia Esoteric and Molecular Biology Laboratory, Department of Pathology, Augusta University, Augusta, GA 30912, USA; (A.V.); (A.K.M.); (V.V.); (S.A.); (A.A.); (K.J.); (J.K.F.)
| | - Sudha Ananth
- Georgia Esoteric and Molecular Biology Laboratory, Department of Pathology, Augusta University, Augusta, GA 30912, USA; (A.V.); (A.K.M.); (V.V.); (S.A.); (A.A.); (K.J.); (J.K.F.)
- Reagent Sciences Department, Research and Development, Illumina, San Diego, CA 92122, USA
| | - Ahmet Alptekin
- Georgia Esoteric and Molecular Biology Laboratory, Department of Pathology, Augusta University, Augusta, GA 30912, USA; (A.V.); (A.K.M.); (V.V.); (S.A.); (A.A.); (K.J.); (J.K.F.)
| | - Kimya Jones
- Georgia Esoteric and Molecular Biology Laboratory, Department of Pathology, Augusta University, Augusta, GA 30912, USA; (A.V.); (A.K.M.); (V.V.); (S.A.); (A.A.); (K.J.); (J.K.F.)
| | - Jaspreet K. Farmaha
- Georgia Esoteric and Molecular Biology Laboratory, Department of Pathology, Augusta University, Augusta, GA 30912, USA; (A.V.); (A.K.M.); (V.V.); (S.A.); (A.A.); (K.J.); (J.K.F.)
| | - Ravindra Kolhe
- Georgia Esoteric and Molecular Biology Laboratory, Department of Pathology, Augusta University, Augusta, GA 30912, USA; (A.V.); (A.K.M.); (V.V.); (S.A.); (A.A.); (K.J.); (J.K.F.)
| |
Collapse
|
3
|
Papa Mze N, Fernand-Laurent C, Daugabel S, Zanzouri O, Juillet SM. Optimization of HIV Sequencing Method Using Vela Sentosa Library on Miseq Ilumina Platform. Genes (Basel) 2024; 15:259. [PMID: 38397248 PMCID: PMC10887851 DOI: 10.3390/genes15020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Genotypic testing is often recommended to improve the management of patients infected with human immunodeficiency virus (HIV). To help combat this major pandemic, next-generation sequencing (NGS) techniques are widely used to analyse resistance to antiretroviral drugs. In this study, we used a Vela Sentosa kit (Vela Diagnostics, Kendall, Singapore), which is usually used for the Ion Torrent personal genome machine (PGM) platform, to sequence HIV using the Illumina Miseq platform. After RNA extraction and reverse transcriptase-polymerase chain reaction (RT-PCR), minor modifications were applied to the Vela Sentosa kit to adapt it to the Illumina Miseq platform. Analysis of the results showed the same mutations present in the samples using both sequencing platforms. The total number of reads varied from 185,069 to 752,343 and from 642,162 to 2,074,028 in the Ion Torrent PGM platform and the Illumina Miseq platform, respectively. The average depth was 21,955 and 46,856 for Ion Torrent PGM and Illumina Miseq platforms, respectively. The cost of sequencing a run of eight samples was quite similar between the two platforms (about USD 1790 for Illumina Miseq and about USD 1833 for Ion Torrent PGM platform). We have shown for the first time that it is possible to adapt and use the Vela Sentosa kit for the Illumina Miseq platform to obtain high-quality results with a similar cost.
Collapse
Affiliation(s)
- Nasserdine Papa Mze
- Service de Biologie, Unité de Microbiologie, Hôpital Mignot, Centre Hospitalier de Versailles, 177 rue de Versailles, 78150 Le Chesnay, France (O.Z.); (S.M.J.)
| | | | | | | | | |
Collapse
|
4
|
Lhossein T, Sylvain K, Descamps V, Morel V, Demey B, Brochot E. Evaluation of the ABL NGS assay for HIV-1 drug resistance testing. Heliyon 2023; 9:e22210. [PMID: 38058650 PMCID: PMC10696055 DOI: 10.1016/j.heliyon.2023.e22210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
HIV evolution and variability around the world requires special monitoring of the viral strains in infected people. High-throughput HIV sequencing and drug resistance testing techniques have become routinely available over the last few years. We conducted a study to assess the new CE-marked ABL NGS HIV genotyping assay on an Illumina® platform, to compare the results (the detection of resistance associated mutations (RAMs) detected in the three main targets: reverse transcriptase, protease, and integrase) with those produced by three Sanger-based assays, and to compare the assays' respective costs. For the 10 samples and a 20 % sensitivity threshold for the NGS technology, the percent agreement between the four assays ranged from 99.5 % to 100 %. We detected 4 more and 10 more RAMs of interest when we lowered the NGS assay's threshold to 10 % and 3 %, respectively. At a threshold of 3 %, the antiretroviral sensitivity interpretation algorithm (for protease inhibitors) was modified for only two patients. The NGS assay's unit cost fell rapidly as the number of samples per run increased. Compared with Sanger sequencing, the ABL NGS HIV genotyping assay is just as robust and somewhat more expensive but opens up interesting multiplexing perspectives for virology laboratories.
Collapse
Affiliation(s)
- Thomas Lhossein
- Department of Virology, Amiens University Medical Center, Amiens, France
- Agents Infectieux Résistance et Chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Karine Sylvain
- Department of Virology, Amiens University Medical Center, Amiens, France
| | - Véronique Descamps
- Department of Virology, Amiens University Medical Center, Amiens, France
- Agents Infectieux Résistance et Chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Virginie Morel
- Department of Virology, Amiens University Medical Center, Amiens, France
- Agents Infectieux Résistance et Chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Baptiste Demey
- Department of Virology, Amiens University Medical Center, Amiens, France
- Agents Infectieux Résistance et Chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Etienne Brochot
- Department of Virology, Amiens University Medical Center, Amiens, France
- Agents Infectieux Résistance et Chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| |
Collapse
|
5
|
Hume J, Lowry K, Whiley DM, Irwin AD, Bletchly C, Sweeney EL. Application of the ViroKey® SQ FLEX assay for detection of cytomegalovirus antiviral resistance. J Clin Virol 2023; 167:105556. [PMID: 37566984 DOI: 10.1016/j.jcv.2023.105556] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) is a viral infection which establishes lifelong latency, often reactivating and causing disease in immunosuppressed individuals, including haematopoietic stem cell transplant (HSCT) recipients. Treatment can be problematic due to antiviral resistance which substantially increases the risk of patient mortality. Diagnostic testing capabilities for CMV antiviral resistance in Australia and elsewhere have traditionally relied on gene-specific Sanger sequencing approaches, however, are now being superseded by next generation sequencing protocols. OBJECTIVE Provide a snapshot of local mutations and explore the feasibility of the ViroKeyࣨ® SQ FLEX Genotyping Assay (Vela Diagnostics Pty Ltd) by examining sequencing success. METHOD Performed sequencing on adult (n = 38) and paediatric (n = 81) plasma samples, over a large range of viral loads (above and below the assay recommended threshold of ≥1,000 International Units (IU)/mL; noting most of our paediatric samples have loads <1,000 IU/mL). RESULTS Eleven test runs (including three repeat runs; 14 to 15 samples per run) were conducted, and four runs were deemed valid. The overall individual sample success rate for the four evaluable test runs was 71.2% (42/59 samples); 80.4% (37/46) samples ≥1,000 IU/mL were valid. Ten clinically important antiviral resistance mutations were detected, the most common being A594V in the UL97 gene, found in 6 (5%) samples. CONCLUSIONS A range of technical issues were experienced, however with improvement this platform could be a useful addition to routine pathology workflows, providing timely antiviral resistance results for patients undergoing HSCT.
Collapse
Affiliation(s)
- Jocelyn Hume
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Kym Lowry
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Queensland Paediatric Infectious Diseases (QPID) Sakzewski Laboratory, Centre for Children's Health Research, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - David M Whiley
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Adam D Irwin
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Infection Management and Prevention Service, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Cheryl Bletchly
- Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Emma L Sweeney
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
6
|
Towards Next-Generation Sequencing for HIV-1 Drug Resistance Testing in a Clinical Setting. Viruses 2022; 14:v14102208. [PMID: 36298763 PMCID: PMC9608942 DOI: 10.3390/v14102208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/15/2022] Open
Abstract
The HIV genotypic resistance test (GRT) is a standard of care for the clinical management of HIV/AIDS patients. In recent decades, population or Sanger sequencing has been the foundation for drug resistance monitoring in clinical settings. However, the advent of high-throughput or next-generation sequencing has caused a paradigm shift towards the detection and characterization of low-abundance covert mutations that would otherwise be missed by population sequencing. This is clinically significant, as these mutations can potentially compromise the efficacy of antiretroviral therapy, causing poor virologic suppression. Therefore, it is important to develop a more sensitive method so as to reliably detect clinically actionable drug-resistant mutations (DRMs). Here, we evaluated the diagnostic performance of a laboratory-developed, high-throughput, sequencing-based GRT using 103 archived clinical samples that were previously tested for drug resistance using population sequencing. As expected, high-throughput sequencing found all the DRMs that were detectable by population sequencing. Significantly, 78 additional DRMs were identified only by high-throughput sequencing, which is statistically significant based on McNemar's test. Overall, our results complement previous studies, supporting the notion that the two methods are well correlated, and the high-throughput sequencing method appears to be an excellent alternative for drug resistance testing in a clinical setting.
Collapse
|
7
|
HIV-1 Drug Resistance Assay Using Ion Torrent Next Generation Sequencing and On-Instrument End-to-End Analysis Software. J Clin Microbiol 2022; 60:e0025322. [PMID: 35699434 DOI: 10.1128/jcm.00253-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 antiretroviral therapy management requires sequencing the protease, reverse transcriptase, and integrase portions of the HIV-1 pol gene. Most resistance testing is performed with Sanger sequencing, which has limited ability to detect minor variants. Next generation sequencing (NGS) platforms enable variant detection at frequencies as low as 1% allowing for earlier detection of resistance and modification of therapy. Implementation of NGS assays in the clinical laboratory is hindered by complicated assay design, cumbersome wet bench procedures, and the complexity of data analysis and bioinformatics. We developed a complete NGS protocol and companion analysis and reporting pipeline using AmpliSeq multiplex PCR, Ion Torrent S5 XL sequencing, and Stanford's HIVdb resistance algorithm. Implemented as a Torrent Suite software plugin, the pipeline runs automatically after sequencing. An optimum variant frequency threshold of 10% was determined by comparing Sanger sequences of archived samples from ViroSeq testing, resulting in a sensitivity of 98.2% and specificity of 99.0%. The majority (91%) of drug resistance mutations were detected by both Sanger and NGS, with 1.7% only by Sanger and 7.3% only by NGS. Variant calls were highly reproducible and there was no cross-reactivity to VZV, HBV, CMV, EBV, and HCV. The limit of detection was 500 copies/mL. The NGS assay performance was comparable to ViroSeq Sanger sequencing and has several advantages, including a publicly available end-to-end analysis and reporting plugin. The assay provides a straightforward path for implementation of NGS for HIV drug resistance testing in the laboratory setting without additional investment in bioinformatics infrastructure and resources.
Collapse
|
8
|
Analytical Assessment of the Vela Diagnostics NGS Assay for HIV Genotyping and Resistance Testing: The Apulian Experience. Int J Mol Sci 2022; 23:ijms23052727. [PMID: 35269868 PMCID: PMC8911269 DOI: 10.3390/ijms23052727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 01/22/2023] Open
Abstract
Drug-resistance monitoring is one of the hardest challenges in HIV management. Next-generation sequencing (NGS) technologies speed up the detection of drug resistance, allowing the adjustment of antiretroviral therapy and enhancing the quality of life of people living with HIV. Recently, the NGS Sentosa® SQ HIV Genotyping Assay (Vela Diagnostics) received approval for in vitro diagnostics use. This work is the first Italian evaluation of the performance of the Vela Diagnostics NGS platform, assessed with 420 HIV-1 clinical samples. A comparison with Sanger sequencing performance is also reported, highlighting the advantages and disadvantages of the Sentosa® NGS assay. The precision of the technology was studied with reference specimens, while intra- and inter-assay reproducibility were evaluated for selected clinical samples. Vela Diagnostics’ NGS assay reached an 87% success rate through 30 runs of analysis in a real-world clinical context. The concordance with Sanger sequencing outcomes was equal to 97.2%. Several detected mismatches were due to NGS’s superior sensitivity to low-frequency variants. A high accuracy was observed in testing reference samples. Repeatability and reproducibility assays highlighted the good performance of the NGS platform. Beyond a few technical issues that call for further optimization, the key improvement will be a better balance between costs and processing speed. Once these issues have been solved, the Sentosa® SQ HIV Genotyping Assay will be the way forward for HIV resistance testing.
Collapse
|
9
|
Vrana JD, Panpradist N, Higa N, Ko D, Ruth P, Kanthula R, Lai JJ, Yang Y, Sakr SR, Chohan B, Chung MH, Frenkel LM, Lutz BR, Klavins E, Beck IA. Implementation of an interactive mobile application to pilot a rapid assay to detect HIV drug resistance mutations in Kenya. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000185. [PMID: 36962187 PMCID: PMC10021139 DOI: 10.1371/journal.pgph.0000185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/09/2022] [Indexed: 04/24/2023]
Abstract
Usability is an overlooked aspect of implementing lab-based assays, particularly novel assays in low-resource-settings. Esoteric instructions can lead to irreproducible test results and patient harm. To address these issues, we developed a software application based on "Aquarium", a laboratory-operating system run on a computer tablet that provides step-by-step digital interactive instructions, protocol management, and sample tracking. Aquarium was paired with a near point-of-care HIV drug resistance test, "OLA-Simple", that detects mutations associated with virologic failure. In this observational study we evaluated the performance of Aquarium in guiding untrained users through the multi-step laboratory protocol with little supervision. To evaluate the training by Aquarium software we conducted a feasibility study in a laboratory at Coptic Hope Center in Nairobi, Kenya. Twelve volunteers who were unfamiliar with the kit performed the test on blinded samples (2 blood specimens; 5 codons/sample). Steps guided by Aquarium included: CD4+ T-Cell separation, PCR, ligation, detection, and interpretation of test results. Participants filled out a short survey regarding their demographics and experience with the software and kit. None of the laboratory technicians had prior experience performing CD4+ separation and 7/12 had no experience performing laboratory-based molecular assays. 12/12 isolated CD4+ T cells from whole blood with yields comparable to isolations performed by trained personnel. The OLA-Simple workflow was completed by all, with genotyping results interpreted correctly by unaided-eye in 108/120 (90%) and by software in 116/120 (97%) of codons analyzed. In the surveys, participants favorably assessed the use of software guidance. The Aquarium digital instructions enabled first-time users in Kenya to complete the OLA-simple kit workflow with minimal training. Aquarium could increase the accessibility of laboratory assays in low-resource-settings and potentially standardize implementation of clinical laboratory tests.
Collapse
Affiliation(s)
- Justin D. Vrana
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Nuttada Panpradist
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Global Health of Women, Adolescents, and Children (Global WACh), School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Nikki Higa
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Daisy Ko
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Parker Ruth
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Paul G. Allen Center for Computer Science & Engineering, University of Washington, Seattle, Washington, United States of America
| | - Ruth Kanthula
- Global Health of Women, Adolescents, and Children (Global WACh), School of Public Health, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - James J. Lai
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Yaoyu Yang
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, United States of America
| | - Samar R. Sakr
- Coptic Hope Center for Infectious Diseases, Nairobi, Kenya
| | - Bhavna Chohan
- Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Michael H. Chung
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Lisa M. Frenkel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Departments of Global Health, Medicine, Pediatrics, and Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Barry R. Lutz
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Eric Klavins
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, United States of America
| | - Ingrid A. Beck
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
10
|
Vrana JD, Panpradist N, Higa N, Ko D, Ruth P, Kanthula R, Lai JJ, Yang Y, Sakr SR, Chohan B, Chung MH, Frenkel LM, Lutz BR, Klavins E, Beck IA. Implementation of an interactive mobile application to pilot a rapid assay to detect HIV drug resistance mutations in Kenya. PLOS GLOBAL PUBLIC HEALTH 2022. [PMID: 36962187 DOI: 10.1101/2021.05.06.21256654v1.full.pdf+html] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Usability is an overlooked aspect of implementing lab-based assays, particularly novel assays in low-resource-settings. Esoteric instructions can lead to irreproducible test results and patient harm. To address these issues, we developed a software application based on "Aquarium", a laboratory-operating system run on a computer tablet that provides step-by-step digital interactive instructions, protocol management, and sample tracking. Aquarium was paired with a near point-of-care HIV drug resistance test, "OLA-Simple", that detects mutations associated with virologic failure. In this observational study we evaluated the performance of Aquarium in guiding untrained users through the multi-step laboratory protocol with little supervision. To evaluate the training by Aquarium software we conducted a feasibility study in a laboratory at Coptic Hope Center in Nairobi, Kenya. Twelve volunteers who were unfamiliar with the kit performed the test on blinded samples (2 blood specimens; 5 codons/sample). Steps guided by Aquarium included: CD4+ T-Cell separation, PCR, ligation, detection, and interpretation of test results. Participants filled out a short survey regarding their demographics and experience with the software and kit. None of the laboratory technicians had prior experience performing CD4+ separation and 7/12 had no experience performing laboratory-based molecular assays. 12/12 isolated CD4+ T cells from whole blood with yields comparable to isolations performed by trained personnel. The OLA-Simple workflow was completed by all, with genotyping results interpreted correctly by unaided-eye in 108/120 (90%) and by software in 116/120 (97%) of codons analyzed. In the surveys, participants favorably assessed the use of software guidance. The Aquarium digital instructions enabled first-time users in Kenya to complete the OLA-simple kit workflow with minimal training. Aquarium could increase the accessibility of laboratory assays in low-resource-settings and potentially standardize implementation of clinical laboratory tests.
Collapse
Affiliation(s)
- Justin D Vrana
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Nuttada Panpradist
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Global Health of Women, Adolescents, and Children (Global WACh), School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Nikki Higa
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Daisy Ko
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Parker Ruth
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Paul G. Allen Center for Computer Science & Engineering, University of Washington, Seattle, Washington, United States of America
| | - Ruth Kanthula
- Global Health of Women, Adolescents, and Children (Global WACh), School of Public Health, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - James J Lai
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Yaoyu Yang
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, United States of America
| | - Samar R Sakr
- Coptic Hope Center for Infectious Diseases, Nairobi, Kenya
| | - Bhavna Chohan
- Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Michael H Chung
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Lisa M Frenkel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Departments of Global Health, Medicine, Pediatrics, and Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Barry R Lutz
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Eric Klavins
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, United States of America
| | - Ingrid A Beck
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
11
|
Multi-Laboratory Comparison of Next-Generation to Sanger-Based Sequencing for HIV-1 Drug Resistance Genotyping. Viruses 2020; 12:v12070694. [PMID: 32605062 PMCID: PMC7411816 DOI: 10.3390/v12070694] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022] Open
Abstract
Next-generation sequencing (NGS) is increasingly used for HIV-1 drug resistance genotyping. NGS methods have the potential for a more sensitive detection of low-abundance variants (LAV) compared to standard Sanger sequencing (SS) methods. A standardized threshold for reporting LAV that generates data comparable to those derived from SS is needed to allow for the comparability of data from laboratories using NGS and SS. Ten HIV-1 specimens were tested in ten laboratories using Illumina MiSeq-based methods. The consensus sequences for each specimen using LAV thresholds of 5%, 10%, 15%, and 20% were compared to each other and to the consensus of the SS sequences (protease 4-99; reverse transcriptase 38-247). The concordance among laboratories' sequences at different thresholds was evaluated by pairwise sequence comparisons. NGS sequences generated using the 20% threshold were the most similar to the SS consensus (average 99.6% identity, range 96.1-100%), compared to 15% (99.4%, 88.5-100%), 10% (99.2%, 87.4-100%), or 5% (98.5%, 86.4-100%). The average sequence identity between laboratories using thresholds of 20%, 15%, 10%, and 5% was 99.1%, 98.7%, 98.3%, and 97.3%, respectively. Using the 20% threshold, we observed an excellent agreement between NGS and SS, but significant differences at lower thresholds. Understanding how variation in NGS methods influences sequence quality is essential for NGS-based HIV-1 drug resistance genotyping.
Collapse
|