1
|
Harman RM, Sipka A, Oxford KA, Oliveira L, Huntimer L, Nydam DV, Van de Walle GR. The mammosphere-derived epithelial cell secretome modulates neutrophil functions in the bovine model. Front Immunol 2024; 15:1367432. [PMID: 38994364 PMCID: PMC11236729 DOI: 10.3389/fimmu.2024.1367432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Background Innovative therapies against bacterial infections are needed. One approach is to focus on host-directed immunotherapy (HDT), with treatments that exploit natural processes of the host immune system. The goals of this type of therapy are to stimulate protective immunity while minimizing inflammation-induced tissue damage. We use non-traditional large animal models to explore the potential of the mammosphere-derived epithelial cell (MDEC) secretome, consisting of all bioactive factors released by the cells, to modulate host immune functions. MDEC cultures are enriched for mammary stem and progenitor cells and can be generated from virtually any mammal. We previously demonstrated that the bovine MDEC secretome, collected and delivered as conditioned medium (CM), inhibits the growth of bacteria in vitro and stimulates functions related to tissue repair in cultured endothelial and epithelial cells. Methods The immunomodulatory effects of the bovine MDEC secretome on bovine neutrophils, an innate immune cell type critical for resolving bacterial infections, were determined in vitro using functional assays. The effects of MDEC CM on neutrophil molecular pathways were explored by evaluating the production of specific cytokines by neutrophils and examining global gene expression patterns in MDEC CM-treated neutrophils. Enzyme linked immunosorbent assays were used to determine the concentrations of select proteins in MDEC CM and siRNAs were used to reduce the expression of specific MDEC-secreted proteins, allowing for the identification of bioactive factors modulating neutrophil functions. Results Neutrophils exposed to MDEC secretome exhibited increased chemotaxis and phagocytosis and decreased intracellular reactive oxygen species and extracellular trap formation, when compared to neutrophils exposed to control medium. C-X-C motif chemokine 6, superoxide dismutase, peroxiredoxin-2, and catalase, each present in the bovine MDEC secretome, were found to modulate neutrophil functions. Conclusion The MDEC secretome administered to treat bacterial infections may increase neutrophil recruitment to the site of infection, stimulate pathogen phagocytosis by neutrophils, and reduce neutrophil-produced ROS accumulation. As a result, pathogen clearance might be improved and local inflammation and tissue damage reduced.
Collapse
Affiliation(s)
- Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Anja Sipka
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Kelly A. Oxford
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | | | | | - Daryl V. Nydam
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, United States
| | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
2
|
Baouche M, Krawczenko A, Paprocka M, Klimczak A, Mermillod P, Locatelli Y, Ochota M, Niżański W. Feline umbilical cord mesenchymal stem cells: Isolation and in vitro characterization from distinct parts of the umbilical cord. Theriogenology 2023; 201:116-125. [PMID: 36889011 DOI: 10.1016/j.theriogenology.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) are a particular population of cells that play an essential role in the regeneration potential of the body. As a source of MSCs, the umbilical cord (UC) has significant advantages, such as a no-risk procedure of tissue retrieval after birth and the easiness of MSCs isolation. In the presented study, the cells derived from the feline whole umbilical cord (WUC) and two separate parts of the UC tissue, including Wharton's jelly (WJ) and umbilical cord vessels (UCV), were investigated to check whether they exhibit MSCs characteristics. The cells were isolated and characterized based on their morphology, pluripotency, differentiation potential, and phenotype. In our study MSCs were successfully isolated and cultured from all UC parts; after one week of culture, the cells had a typical spindle shape consistent with MSCs morphology. Cells showed the ability to differentiate into chondrocytes, osteoblasts and adipocytes cells. Two markers typical of MSCs (CD44, CD90) and three pluripotency markers (Oct4, SOX2 and Nanog) were expressed in all cells cultures; but no expression of (CD34, MCH II) was evidenced by flow cytometry and RT-PCR. In addition, WJ-MSCs showed the highest ability of proliferation, more significant pluripotency gene expressions, and greater differentiation potential than the cells isolated from WUC and UCV. Finally, we conclude in this study that cat MSCs derived from all the parts are valuable cells that can be efficiently used in various fields of feline regenerative medicine, but cells from WJ can offer the best clinical utility.
Collapse
Affiliation(s)
- Meriem Baouche
- Wrocław University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animals, 50-366, Wrocław, Poland
| | - Agnieszka Krawczenko
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Maria Paprocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Aleksandra Klimczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Pascal Mermillod
- Physiology of Reproduction and Behaviors (PR China), UMR085, INRAE, CNRS, University of Tours, 37380, Nouzilly, France
| | - Yann Locatelli
- Physiology of Reproduction and Behaviors (PR China), UMR085, INRAE, CNRS, University of Tours, 37380, Nouzilly, France; Museum National d'Histoire Naturelle, Réserve Zoologique de la Haute Touche, 36290, Obterre, France
| | - Małgorzata Ochota
- Wrocław University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animals, 50-366, Wrocław, Poland.
| | - Wojciech Niżański
- Wrocław University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animals, 50-366, Wrocław, Poland.
| |
Collapse
|
3
|
Koch DW, Schnabel LV, Ellis IM, Bates RE, Berglund AK. TGF-β2 enhances expression of equine bone marrow-derived mesenchymal stem cell paracrine factors with known associations to tendon healing. Stem Cell Res Ther 2022; 13:477. [PMID: 36114555 PMCID: PMC9482193 DOI: 10.1186/s13287-022-03172-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) secrete paracrine factors and extracellular matrix proteins that contribute to their ability to support tissue healing and regeneration. Both the transcriptome and the secretome of MSCs can be altered by treating the cells with cytokines, but neither have been thoroughly investigated following treatment with the specific cytokine transforming growth factor (TGF)-β2. Methods RNA-sequencing and western blotting were used to compare gene and protein expression between untreated and TGF-β2-treated equine bone marrow-derived MSCs (BM-MSCs). A co-culture system was utilized to compare equine tenocyte migration during co-culture with untreated and TGF-β2-treated BM-MSCs. Results TGF-β2 treatment significantly upregulated gene expression of collagens, extracellular matrix molecules, and growth factors. Protein expression of collagen type I and tenascin-C was also confirmed to be upregulated in TGF-β2-treated BM-MSCs compared to untreated BM-MSCs. Both untreated and TGF-β2-treated BM-MSCs increased tenocyte migration in vitro. Conclusions Treating equine BM-MSCs with TGF-β2 significantly increases production of paracrine factors and extracellular matrix molecules important for tendon healing and promotes the migration of tenocytes in vitro. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03172-9.
Collapse
|
4
|
Harman RM, Churchill KA, Parmar S, Van de Walle GR. Mesenchymal stromal cells isolated from chicken peripheral blood secrete bioactive factors with antimicrobial and regenerative properties. Front Vet Sci 2022; 9:949836. [PMID: 36090169 PMCID: PMC9449329 DOI: 10.3389/fvets.2022.949836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are adult multipotent progenitor cells that have been isolated from various tissue sources of many species, primarily mammals. Generally, these cells proliferate extensively in culture and have been shown to secrete bioactive factors that contribute to healing processes by regulating inflammation, modulating immune responses, inhibiting bacterial growth, and promoting tissue regeneration. The present study reports on the isolation and characterization of MSCs from the peripheral blood (PB) of chickens. Chicken PBMSCs were characterized based on their trilineage differentiation potential and gene and protein expression of MSC-specific cell surface markers. To determine functionality, conditioned medium (CM), which contains all bioactive factors secreted by MSCs, was collected from chicken PBMSCs, and used in in vitro antimicrobial, migration, and angiogenesis assays. Chicken PBMSC CM was found to (i) inhibit the growth of planktonic Staphylococcus aureus (S. aureus), and even more significantly the methicillin-resistant S. aureus (MRSA), (ii) decrease adhesion and promote migration of fibroblasts, and (iii) support endothelial cell tube formation. Collectively, these data indicate that chicken PBMSCs secrete bioactive factors with antimicrobial and regenerative properties, and as such, provide a novel source of cell-based therapies for the poultry industry.
Collapse
|
5
|
Effect of Scrapie Prion Infection in Ovine Bone Marrow-Derived Mesenchymal Stem Cells and Ovine Mesenchymal Stem Cell-Derived Neurons. Animals (Basel) 2021; 11:ani11041137. [PMID: 33921147 PMCID: PMC8071557 DOI: 10.3390/ani11041137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Prion diseases are neurodegenerative disorders affecting humans and animals. The development of in vitro cellular models from naturally susceptible species like humans or ruminants can potentially make a great contribution to the study of many aspects of these diseases, including the ability of prions to infect and replicate in cells and therapeutics. Our study shows for the first time how ovine mesenchymal stem cells derived from bone marrow and their neural-like progeny are able to react to scrapie prion infection in vitro and assesses the effects of this infection on cell viability and proliferation. Finally, we observe that the differentiation of ovine mesenchymal stem cells into neuron-like cells makes them more permissive to prion infection. Abstract Scrapie is a prion disease affecting sheep and goats and it is considered a prototype of transmissible spongiform encephalopathies (TSEs). Mesenchymal stem cells (MSCs) have been proposed as candidates for developing in vitro models of prion diseases. Murine MSCs are able to propagate prions after previous mouse-adaptation of prion strains and, although ovine MSCs express the cellular prion protein (PrPC), their susceptibility to prion infection has never been investigated. Here, we analyze the potential of ovine bone marrow-derived MSCs (oBM-MSCs), in growth and neurogenic conditions, to be infected by natural scrapie and propagate prion particles (PrPSc) in vitro, as well as the effect of this infection on cell viability and proliferation. Cultures were kept for 48–72 h in contact with homogenates of central nervous system (CNS) samples from scrapie or control sheep. In growth conditions, oBM-MSCs initially maintained detectable levels of PrPSc post-inoculation, as determined by Western blotting and ELISA. However, the PrPSc signal weakened and was lost over time. oBM-MSCs infected with scrapie displayed lower cell doubling and higher doubling times than those infected with control inocula. On the other hand, in neurogenic conditions, oBM-MSCs not only maintained detectable levels of PrPSc post-inoculation, as determined by ELISA, but this PrPSc signal also increased progressively over time. Finally, inoculation with CNS extracts seems to induce the proliferation of oBM-MSCs in both growth and neurogenic conditions. Our results suggest that oBM-MSCs respond to prion infection by decreasing their proliferation capacity and thus might not be permissive to prion replication, whereas ovine MSC-derived neuron-like cells seem to maintain and replicate PrPSc.
Collapse
|
6
|
Harman RM, Marx C, Van de Walle GR. Translational Animal Models Provide Insight Into Mesenchymal Stromal Cell (MSC) Secretome Therapy. Front Cell Dev Biol 2021; 9:654885. [PMID: 33869217 PMCID: PMC8044970 DOI: 10.3389/fcell.2021.654885] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic potential of the mesenchymal stromal cell (MSC) secretome, consisting of all molecules secreted by MSCs, is intensively studied. MSCs can be readily isolated, expanded, and manipulated in culture, and few people argue with the ethics of their collection. Despite promising pre-clinical studies, most MSC secretome-based therapies have not been implemented in human medicine, in part because the complexity of bioactive factors secreted by MSCs is not completely understood. In addition, the MSC secretome is variable, influenced by individual donor, tissue source of origin, culture conditions, and passage. An increased understanding of the factors that make up the secretome and the ability to manipulate MSCs to consistently secrete factors of biologic importance will improve MSC therapy. To aid in this goal, we can draw from the wealth of information available on secreted factors from MSC isolated from veterinary species. These translational animal models will inspire efforts to move human MSC secretome therapy from bench to bedside.
Collapse
Affiliation(s)
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
7
|
Debbarma P, Mondal T, Manna C, Kumar K, Mukherjee J, Das BC, Bag S, Das K. Post-calving umbilical cord tissue offcut: A potential source for the isolation of bovine mesenchymal stem cells. Vet World 2020; 13:2772-2779. [PMID: 33487997 PMCID: PMC7811551 DOI: 10.14202/vetworld.2020.2772-2779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Veterinary health care is an emergent area in animal sciences and innovative therapeutic approaches happen to be imperative in the present days. In view of the importance of cattle health and production, it is necessary to take up contemporary approach of stem cell therapy in this sector also. This study aimed to standardize an explant culture method of bovine umbilical tissue offcut to isolate mesenchymal stem cells (MSCs) because considerable efforts are required for ensuring easy accessibility and availability of MSCs in bulk quantity, as well as in establishing and characterizing the cell lines. Materials and Methods: The umbilical cord (UC) tissue matrix offcut was collected after calving. A simplified in vitro cell isolation technique was followed to collect the emerged out cells from the explants of UC. Further, we expanded these isolated cells in vitro, observed its growth kinetics, and characterized to confirm as per the criterion of bovine MSCs. Results: A considerable exponential growth rate of the UC-derived cells was noticed. In addition to their confirmation as MSCs, the cells also exhibited plastic adherent property and maintained the spindle-shaped morphology throughout the in vitro culture. The cultured cells were found positive MSC-specific surface markers CD105, CD90, and CD73 and were negative for hematopoietic cell marker CD45. Cytochemical studies revealed the ability of the cells to differentiate into osteogenic, chondrogenic, and adipogenic lineages. Conclusion: This simplified method of isolation and culture of bovine multipotent MSCs from the UC offcut collected after calving could be extrapolated for the greater availability of the cells for prospective therapeutic applications.
Collapse
Affiliation(s)
- Parishma Debbarma
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Tanmay Mondal
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Camelia Manna
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Kuldeep Kumar
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Joydip Mukherjee
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Bikash Chandra Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, West Bengal, India
| | - Sadhan Bag
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Kinsuk Das
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| |
Collapse
|
8
|
Brinkhof B, Zhang B, Cui Z, Ye H, Wang H. ALCAM (CD166) as a gene expression marker for human mesenchymal stromal cell characterisation. Gene X 2020; 763S:100031. [PMID: 32550557 PMCID: PMC7285916 DOI: 10.1016/j.gene.2020.100031] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/08/2020] [Indexed: 02/06/2023] Open
Abstract
Background Human mesenchymal stromal cells (MSCs) phenotypically share their positive expression of the International Society for Cell and Gene Therapy (ISCT) markers CD73, CD90 and CD105 with fibroblasts. Fibroblasts are often co-isolated as an unwanted by-product from biopsy and they can rapidly overgrow the MSCs in culture. Indeed, many other surface markers have been proposed, though no unique MSC specific marker has been identified yet. Quantitative PCR (qPCR) is a precise, efficient and rapid method for gene expression analysis. To identify a marker suitable for accurate MSC characterisation, qPCR was exploited. Methods and results Two commercially obtained bone marrow (BM) derived MSCs and an hTERT immortalised BM-MSC line (MSC-TERT) have been cultured for different days and at different oxygen levels before RNA extraction. Together with RNA samples previous extracted from umbilical cord derived MSCs and MSC-TERT cells cultured in 2D or 3D, this heterogeneous sample set was quantitatively analysed for the expression levels of 18 candidate MSC marker genes. The expression levels in MSCs were compared with the expression levels in fibroblasts to verify the differentiation capability of these genes between MSCs and fibroblasts. None of the ISCT markers could differentiate between fibroblasts and MSCs. A total of six other genes (ALCAM, CLIC1, EDIL3, EPHA2, NECTIN2, and TMEM47) were identified as possible biomarkers for accurate identification of MSCs. Conclusion Justified by considerations on expression level, reliability and specificity, Activated-Leukocyte Cell Adhesion Molecule (ALCAM) was the best candidate for improving the biomarker set of MSC identification.
Collapse
Key Words
- (q)PCR, (quantitative) polymerase chain reaction
- AD, adipose
- AF, Amniotic Fluid
- ALCAM, Activated-Leukocyte Cell Adhesion Molecule
- Activated-leukocyte cell adhesion molecule
- BM, bone marrow
- BSG, Basigin
- Biomarker
- CD, cluster of differentiation
- CLIC1, chloride intracellular channel 1
- CLIC4, chloride intracellular channel 4
- Cq, Quantification cycle
- DF, Dermal Fibroblasts
- DP, Dental Pulp
- EDIL3, EGF like repeats and discoidin domains 3
- ENG, Endoglin
- EPHA2, EPH receptor A2
- ER, Endoplasmatic Reticulum
- FACS, Fluorescence Assisted Cell Sorting
- FN1, Fibronectin 1
- IGFBP7, insulin like growth factor binding protein 7
- ISCT, International Society for Cell and Gene Therapy
- ITGA1, integrin subunit alpha 1
- LAMP1, lysosomal associated membrane protein 1
- LRRC59, leucine rich repeat containing 59
- MCAM, melanoma cell adhesion molecule
- MM, Multiple Myeloma
- MPC, Mesenchymal Progenitor Cell
- MSC
- MSC, Mesenchymal Stromal Cells
- NECTIN2, nectin cell adhesion molecule 2
- NK, Natural Killer
- NT5E, 5′-nucleotidase ecto
- OS, Osteosarcoma
- PL, Placenta
- PPIA, peptidylprolyl isomerase A
- PUM1, pumilio RNA binding family member 1
- RM, Regenerative Medicine
- RNA
- RNA-seq, RNA sequencing
- RT, Reverse Transcriptase
- Regenerative medicine
- SEM, Standard Error of the Mean
- TBP, TATA-box binding protein
- TCF, Tissue Culture Plate
- TE, Tissue Engineering
- TFRC, transferrin receptor
- THY1, Thy-1 cell surface antigen
- TLN1, Talin 1
- TMEM47, transmembrane protein 47
- UC, umbilical cord
- YWHAZ, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta
- cDNA, DNA complementary to RNA
- qPCR
Collapse
Affiliation(s)
- Bas Brinkhof
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Bo Zhang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Hui Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Oxford Suzhou Centre for Advanced Research, Suzhou Industrial Park, Jiangsu 215123, China
| |
Collapse
|
9
|
Mariñas-Pardo L, García-Castro J, Rodríguez-Hurtado I, Rodríguez-García MI, Núñez-Naveira L, Hermida-Prieto M. Allogeneic Adipose-Derived Mesenchymal Stem Cells (Horse Allo 20) for the Treatment of Osteoarthritis-Associated Lameness in Horses: Characterization, Safety, and Efficacy of Intra-Articular Treatment. Stem Cells Dev 2018; 27:1147-1160. [DOI: 10.1089/scd.2018.0074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
| | - Javier García-Castro
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | | | | | | |
Collapse
|
10
|
Behavior of multipotent stem cells isolated in mobilized peripheral blood from sheep after culture with human chondrogenic medium. Tissue Cell 2018; 52:116-123. [PMID: 29857820 DOI: 10.1016/j.tice.2018.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 05/08/2018] [Indexed: 01/30/2023]
Abstract
Today, regenerative medicine requires new sources of multipotent stem cells for their differentiation to chondrocytes using the mediums of differentiation available in the market. This study aimed to determine whether the Mesenchymal Stem Cells (MSCs) isolated from Mobilized Peripheral Blood (MPB) in sheep using the Granulocyte Colony-Stimulating Factor (G-CSF), have the ability of first acquire a fibroblast-like morphology after being forced out of the bone marrow niche by G-CSF and second, if the cells have the capacity to express collagen type-II α I in primary culture using a human commercial media of differentiation. Six Suffolk male sheep with age of 2 years were mobilized using G-CSF. One subcutaneous injection of 10 mcg per kilogram of bodyweight were administered every 24 h during three consecutive days. At day four, a sample of 20 mL of peripheral blood was harvested, afterwards, monocytes cells were separated by ficoll gradient. The mobilized MSCs were expanded in primary culture in DMEM medium supplemented with 10% adult sheep serum for three weeks and characterized by an antibody panel for surface markers: CD105, CD90, CD73, CD34, and CD45, before and after primary culture. Subsequently, an aliquot of cells in the first pass were cultured in a commercial human chondrogenic medium for three weeks. As a result, the percentage of surface markers for MSCs (CD105, CD90, CD73) in expanded cells in primary culture significantly increased, at the same time a decrease in the markers for hematopoietic cells (CD34 and CD45) was observed and the cells morphology was fibroblast-like. After three weeks of differentiation culture, the immunofluorescence analysis evidenced the expression of collagen-type-II. It was concluded that Mesenchymal Stem Cells isolated from mobilized peripheral blood in sheep have the ability to pre-differentiate into chondral like cells and express collagen type-II when are stimulated with a human commercial chondrogenic medium in monolayer culture.
Collapse
|
11
|
Berglund AK, Fortier LA, Antczak DF, Schnabel LV. Immunoprivileged no more: measuring the immunogenicity of allogeneic adult mesenchymal stem cells. Stem Cell Res Ther 2017; 8:288. [PMID: 29273086 PMCID: PMC5741939 DOI: 10.1186/s13287-017-0742-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Autologous and allogeneic adult mesenchymal stem/stromal cells (MSCs) are increasingly being investigated for treating a wide range of clinical diseases. Allogeneic MSCs are especially attractive due to their potential to provide immediate care at the time of tissue injury or disease diagnosis. The prevailing dogma has been that allogeneic MSCs are immune privileged, but there have been very few studies that control for matched or mismatched major histocompatibility complex (MHC) molecule expression and that examine immunogenicity in vivo. Studies that control for MHC expression have reported both cell-mediated and humoral immune responses to MHC-mismatched MSCs. The clinical implications of immune responses to MHC-mismatched MSCs are still unknown. Pre-clinical and clinical studies that document the MHC haplotype of donors and recipients and measure immune responses following MSC treatment are necessary to answer this critical question. Conclusions This review details what is currently known about the immunogenicity of allogeneic MSCs and suggests contemporary assays that could be utilized in future studies to appropriately identify and measure immune responses to MHC-mismatched MSCs.
Collapse
Affiliation(s)
- Alix K Berglund
- Department of Clinical Sciences, College of Veterinary Medicine and the Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.
| | - Lisa A Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine and the Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.
| |
Collapse
|
12
|
Lin HY, Fujita N, Endo K, Morita M, Takeda T, Nakagawa T, Nishimura R. Isolation and Characterization of Multipotent Mesenchymal Stem Cells Adhering to Adipocytes in Canine Bone Marrow. Stem Cells Dev 2017; 26:431-440. [DOI: 10.1089/scd.2016.0200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Hsing-Yi Lin
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Fujita
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kentaro Endo
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Maresuke Morita
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tae Takeda
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Campos LL, Landim-Alvarenga FC, Ikeda TL, Monteiro BA, Maia L, Freitas-Dell’Aqua CP, Vita BD. Isolation, culture, characterization and cryopreservation of stem cells derived from amniotic mesenchymal layer and umbilical cord tissue of bovine fetuses. PESQUISA VETERINARIA BRASILEIRA 2017. [DOI: 10.1590/s0100-736x2017000300012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT: Stem cells are undifferentiated cells with a high proliferation potential. These cells can be characterized by their in vivo ability to self-renew and to differentiate into specialized cell lines. The most used stem cell types, in both human and veterinary fields, are the mesenchymal stem cells (MSC) derived from bone marrow and adipose tissue. Nowadays, there is a great interest in using stem cells derived from fetal tissues, such as amniotic membrane (AM) and umbilical cord tissue (UCT), which can be obtained non-invasively at delivery time. Due to the scarcity of studies in bovine species, the aim of this study was to isolate, characterize, differentiate and cryopreserve MSC derived from the mesenchymal layer of amniotic membrane (AM), for the first time, and umbilical cord tissue (UCT) of dairy cow neonates after assisted delivery (AD) and from fetus at initial third of pregnancy (IT) obtained in slaughterhouse. Cells were isolated by enzymatic digestion of the tissue fragments with 0.1% collagenase solution. Six samples of AM and UCT at delivery time and six samples of AM and UCT at first trimester of pregnancy were subjected to morphology evaluation, imunophenotype characterization, in vitro osteogenic, adipogenic and chondrogenic differentiation and viability analysis after cryopreservation. All samples showed adherence to plastic and fibroblast-like morphology. Immunocytochemistry revealed expression of CD 44, NANOG and OCT-4 and lack of expression of MHC II in MSC from all samples. Flow cytometry demonstrated that cells from all samples expressed CD 44, did not or low expressed CD 34 (AM: IT-0.3%a, AD-3.4%b; UCT: 0.4%, 1.4%) and MHC II (AM: IT-1.05%a, AD-9.7%b; UCT: IT-0.7%a, AD-5.7%b). They were also capable of trilineage mesenchymal differentiation and showed 80% viability after cryopreservation. According to the results, bovine AM and UCT-derived cells, either obtained at delivery time or from slaughterhouse, are a painless and non-invasive source of MSC and can be used for stem cell banking.
Collapse
|
14
|
Bugueño J, Li W, Salat P, Qin L, Akintoye SO. The bone regenerative capacity of canine mesenchymal stem cells is regulated by site-specific multilineage differentiation. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 123:163-172. [PMID: 27876576 DOI: 10.1016/j.oooo.2016.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/08/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) offer a promising therapy in dentistry because of their multipotent properties. Selecting donor MSCs is crucial because Beagle dogs (canines) commonly used in preclinical studies have shown variable outcomes, and it is unclear whether canine MSCs (cMSCs) are skeletal site specific. This study tested whether jaw and long bone cMSCs have disparate in vitro and in vivo multilineage differentiation capabilities. STUDY DESIGN Primary cMSCs were isolated from the mandible (M-cMSCs) and femur (F-cMSCs) of four healthy Beagle dogs. The femur served as the non-oral control. Clonogenic and proliferative abilities were assessed. In vitro osteogenic, chondrogenic, adipogenic, and neural multilineage differentiation were correlated with in vivo bone regeneration and potential for clinical applications. RESULTS M-cMSCs displayed two-fold increase in clonogenic and proliferative capacities relative to F-cMSCs (P = .006). M-cMSCs in vitro osteogenesis based on alkaline phosphatase (P = .04), bone sialoprotein (P = .05), and osteocalcin (P = .03), as well as adipogenesis (P = .007) and chondrogenesis (P = .009), were relatively higher and correlated with enhanced M-cMSC bone regenerative capacity. Neural expression markers, nestin and βIII-tubulin, were not significantly different. CONCLUSIONS The enhanced differentiation and bone regenerative capacity of mandible MSCs may make them favorable donor graft materials for site-specific jaw bone regeneration.
Collapse
Affiliation(s)
- Juan Bugueño
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Weihua Li
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pinky Salat
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- Department of Orthopedics School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunday O Akintoye
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Cardoso TC, Okamura LH, Baptistella JC, Gameiro R, Ferreira HL, Marinho M, Flores EF. Isolation, characterization and immunomodulatory-associated gene transcription of Wharton's jelly-derived multipotent mesenchymal stromal cells at different trimesters of cow pregnancy. Cell Tissue Res 2016; 367:243-256. [PMID: 27677269 DOI: 10.1007/s00441-016-2504-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 09/06/2016] [Indexed: 12/17/2022]
Abstract
The possibility of isolating bovine mesenchymal multipotent stromal cells (MSCs) from fetal adnexa is an interesting prospect due to the potential use of these cells in biotechnological applications. However, little is known about the properties of these progenitor cells in bovine species. Wharton's jelly (WJ) MSC cells were obtained from the umbilical cord of bovine fetuses at three different stages of pregnancy and divided into groups 1, 2 and 3 according to gestational trimester. Cell morphology, from the three stages of pregnancy, typically appeared fibroblast-like spindle-shaped, presenting the same viability and number. Moreover, the proliferative ability of T-cells in response to a mitogenic stimulus was suppressed when WJMSC cells were added to the culture. Multilineage properties were confirmed by their ability to undergo adipogenic, osteogenic/chondrogenic and neurogenic differentiation. Mesenchymal phenotyping, CD105+, CD29+, CD73+ and CD90+ cell markers were detected in all three cell groups, yet these markers were considered more expressed in MSCs of group 2 (p < 0.005). Expression of cytokines IL2, IL6RR, INFAC, INFB1, IFNG, TNF and LTBR were downregulated, whereas IL1F10 expression was upregulated in all tested WJMSCs. The present study demonstrated that WJMSCs harvested from the bovine umbilical cord at different gestational stages showed proliferative capacity, immune privilege and stemness potential.
Collapse
Affiliation(s)
- Tereza C Cardoso
- Laboratory of Animal Virology and Cell Culture College of Veterinary Medicine, UNESP- Sao Paulo State University, Araçatuba, São Paulo, 16050-680, Brazil.
| | - Lucas H Okamura
- Laboratory of Animal Virology and Cell Culture College of Veterinary Medicine, UNESP- Sao Paulo State University, Araçatuba, São Paulo, 16050-680, Brazil
| | - Jamila C Baptistella
- Laboratory of Animal Virology and Cell Culture College of Veterinary Medicine, UNESP- Sao Paulo State University, Araçatuba, São Paulo, 16050-680, Brazil.,Domestic Animals Anatomy Section, College of Veterinary Medicine, UNESP- Sao Paulo State University, Araçatuba, São Paulo, 16050-680, Brazil
| | - Roberto Gameiro
- Laboratory of Animal Virology and Cell Culture College of Veterinary Medicine, UNESP- Sao Paulo State University, Araçatuba, São Paulo, 16050-680, Brazil.,Domestic Animals Embryology Section, College of Veterinary Medicine, UNESP- Sao Paulo State University, Araçatuba, São Paulo, 16050-680, Brazil
| | - Helena L Ferreira
- Department of Veterinary Medicine, FZEA- USP- University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Márcia Marinho
- Laboratory of Animal Virology and Cell Culture College of Veterinary Medicine, UNESP- Sao Paulo State University, Araçatuba, São Paulo, 16050-680, Brazil
| | - Eduardo F Flores
- Departament of Preventive Veterinary Medicine, College of Veterinary Medicine, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97115-900, Brazil
| |
Collapse
|
16
|
GFP labelling and epigenetic enzyme expression of bone marrow-derived mesenchymal stem cells from bovine foetuses. Res Vet Sci 2015; 99:120-8. [PMID: 25637269 DOI: 10.1016/j.rvsc.2014.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells (MSC) are multipotent progenitor cells defined by their ability to self-renew and give rise to differentiated progeny. Since MSC from adult tissues represent a promising source of cells for a wide range of cellular therapies, there is high scientific interest in better understanding the potential for genetic modification and the mechanism underlying differentiation. The main objective of this study was to evaluate the potential for gene delivery using a GFP vector and lipofectamine, and to quantify the expression of epigenetic enzymes during foetal bMSC multilineage differentiation. Proportion of GFP-positive cells achieved (15.7% ± 3.5) indicated moderately low transfection efficiency. Analysis of DNA methyltransferase expression during MSC multilineage differentiation suggested no association with osteogenic and chondrogenic differentiation. However, up-regulation of KDM6B expression during osteogenic differentiation was associated with adoption of osteogenic lineage. Furthermore, increase in epigenetic enzyme expression suggested an intense epigenetic regulation during adipogenic differentiation.
Collapse
|
17
|
Arfat Y, Xiao WZ, Iftikhar S, Zhao F, Li DJ, Sun YL, Zhang G, Shang P, Qian AR. Physiological effects of microgravity on bone cells. Calcif Tissue Int 2014; 94:569-79. [PMID: 24687524 DOI: 10.1007/s00223-014-9851-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/12/2014] [Indexed: 01/07/2023]
Abstract
Life on Earth developed under the influence of normal gravity (1g). With evidence from previous studies, scientists have suggested that normal physiological processes, such as the functional integrity of muscles and bone mass, can be affected by microgravity during spaceflight. During the life span, bone not only develops as a structure designed specifically for mechanical tasks but also adapts for efficiency. The lack of weight-bearing forces makes microgravity an ideal physical stimulus to evaluate bone cell responses. One of the most serious problems induced by long-term weightlessness is bone mineral loss. Results from in vitro studies that entailed the use of bone cells in spaceflights showed modification in cell attachment structures and cytoskeletal reorganization, which may be involved in bone loss. Humans exposed to microgravity conditions experience various physiological changes, including loss of bone mass, muscle deterioration, and immunodeficiency. In vitro models can be used to extract valuable information about changes in mechanical stress to ultimately identify the different pathways of mechanotransduction in bone cells. Despite many in vivo and in vitro studies under both real microgravity and simulated conditions, the mechanism of bone loss is still not well defined. The objective of this review is to summarize the recent research on bone cells under microgravity conditions based on advances in the field.
Collapse
Affiliation(s)
- Yasir Arfat
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Faculty of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|