1
|
Kovács KD, Szittner Z, Magyaródi B, Péter B, Szabó B, Vörös A, Kanyó N, Székács I, Horvath R. Optical sensor reveals the hidden influence of cell dissociation on adhesion measurements. Sci Rep 2024; 14:11719. [PMID: 38778185 PMCID: PMC11111754 DOI: 10.1038/s41598-024-61485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Cell adhesion experiments are important in tissue engineering and for testing new biologically active surfaces, prostheses, and medical devices. Additionally, the initial state of adhesion (referred to as nascent adhesion) plays a key role and is currently being intensively researched. A critical step in handling all adherent cell types is their dissociation from their substrates for further processing. Various cell dissociation methods and reagents are used in most tissue culture laboratories (here, cell dissociation from the culture surface, cell harvesting, and cell detachment are used interchangeably). Typically, the dissociated cells are re-adhered for specific measurements or applications. However, the impact of the choice of dissociation method on cell adhesion in subsequent measurements, especially when comparing the adhesivity of various surfaces, is not well clarified. In this study, we demonstrate that the application of a label-free optical sensor can precisely quantify the effect of cell dissociation methods on cell adhesivity, both at the single-cell and population levels. The optical measurements allow for high-resolution monitoring of cellular adhesion without interfering with the physiological state of the cells. We found that the choice of reagent significantly alters cell adhesion on various surfaces. Our results clearly demonstrate that biological conclusions about cellular adhesion when comparing various surfaces are highly dependent on the employed dissociation method. Neglecting the choice of cellular dissociation can lead to misleading conclusions when evaluating cell adhesion data from various sources and comparing the adhesivity of two different surfaces (i.e., determining which surface is more or less adhesive).
Collapse
Affiliation(s)
- Kinga Dóra Kovács
- Nanobiosensorics Laboratory, MFA, Centre for Energy Research, HUN-REN, Budapest, Hungary
- Department of Biological Physics, ELTE Eötvös University, Budapest, Hungary
| | - Zoltán Szittner
- Nanobiosensorics Laboratory, MFA, Centre for Energy Research, HUN-REN, Budapest, Hungary
| | - Beatrix Magyaródi
- Nanobiosensorics Laboratory, MFA, Centre for Energy Research, HUN-REN, Budapest, Hungary
- Chemical Engineering and Material Sciences Doctoral School, University of Pannonia, Veszprém, Hungary
| | - Beatrix Péter
- Nanobiosensorics Laboratory, MFA, Centre for Energy Research, HUN-REN, Budapest, Hungary
| | - Bálint Szabó
- Department of Biological Physics, ELTE Eötvös University, Budapest, Hungary
- Cellsorter Kft., Budapest, Hungary
| | - Alexa Vörös
- Nanobiosensorics Laboratory, MFA, Centre for Energy Research, HUN-REN, Budapest, Hungary
| | - Nicolett Kanyó
- Nanobiosensorics Laboratory, MFA, Centre for Energy Research, HUN-REN, Budapest, Hungary
| | - Inna Székács
- Nanobiosensorics Laboratory, MFA, Centre for Energy Research, HUN-REN, Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, MFA, Centre for Energy Research, HUN-REN, Budapest, Hungary.
| |
Collapse
|
2
|
Kikuchi T, Nishimura M, Shirakawa C, Fujita Y, Otoi T. Avoiding aggregation of human bone marrow-derived mesenchymal stem cells stored in cell preservation solutions. In Vitro Cell Dev Biol Anim 2024; 60:123-127. [PMID: 38363434 PMCID: PMC10917824 DOI: 10.1007/s11626-024-00849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024]
Affiliation(s)
- Takeshi Kikuchi
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima, 772-8601, Japan.
| | - Masuhiro Nishimura
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima, 772-8601, Japan
| | - Chikage Shirakawa
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima, 772-8601, Japan
| | - Yasutaka Fujita
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima, 772-8601, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, 2272-2 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| |
Collapse
|
3
|
Garg A, Khan S, Luu N, Nicholas DJ, Day V, King AL, Fear J, Lalor PF, Newsome PN. TGFβ 1 priming enhances CXCR3-mediated mesenchymal stromal cell engraftment to the liver and enhances anti-inflammatory efficacy. J Cell Mol Med 2023; 27:864-878. [PMID: 36824012 PMCID: PMC10002976 DOI: 10.1111/jcmm.17698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/25/2023] Open
Abstract
The immunomodulatory characteristics of mesenchymal stromal cells (MSC) confers them with potential therapeutic value in the treatment of inflammatory/immune-mediated conditions. Previous studies have reported only modest beneficial effects in murine models of liver injury. In our study we explored the role of MSC priming to enhance their effectiveness. Herein we demonstrate that stimulation of human MSC with cytokine TGβ1 enhances their homing and engraftment to human and murine hepatic sinusoidal endothelium in vivo and in vitro, which was mediated by increased expression of CXCR3. Alongside improved hepatic homing there was also greater reduction in liver inflammation and necrosis, with no adverse effects, in the CCL4 murine model of liver injury treated with primed MSC. Priming of MSCs with TGFβ1 is a novel strategy to improve the anti-inflammatory efficacy of MSCs.
Collapse
Affiliation(s)
- Abhilok Garg
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sheeba Khan
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - N Luu
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Davies J Nicholas
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Victoria Day
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Andrew L King
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Janine Fear
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Patricia F Lalor
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Philip N Newsome
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
4
|
A novel feature for monitoring the enzymatic harvesting process of adherent cell cultures based on lens-free imaging. Sci Rep 2022; 12:22202. [PMID: 36564377 PMCID: PMC9789138 DOI: 10.1038/s41598-022-22561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022] Open
Abstract
Adherent cell cultures are often dissociated from their culture vessel (and each other) through enzymatic harvesting, where the detachment response is monitored by an operator. However, this approach is lacking standardisation and reproducibility, and prolonged exposure or too high concentrations can affect the cell's viability and differentiation potential. Quantitative monitoring systems are required to characterise the cell detachment response and objectively determine the optimal time-point to inhibit the enzymatic reaction. State-of-the-art methodologies rely on bulky imaging systems and/or features (e.g. circularity) that lack robustness. In this study, lens-free imaging (LFI) technology was used to develop a novel cell detachment feature. Seven different donors were cultured and subsequently harvested with a (diluted) enzymatic harvesting solution after 3, 5 and 7 days of culture. Cell detachment was captured with the LFI set-up over a period of 20 min (every 20 s) and by optimising the reconstruction of the LFI intensity images, a new feature could be identified. Bright regions in the intensity image were identified as detaching cells and using image analysis, a method was developed to automatically extract this feature, defined as the percentage of detached cell regions. Next, the method was quantitatively and qualitatively validated on a diverse set of images. Average absolute error values of 1.49%, 1.34% and 1.97% were obtained for medium to high density and overconfluent cultures, respectively. The detachment response was quantified for all conditions and the optimal time for enzyme inhibition was reached when approximately 92.5% of the cells were detached. On average, inhibition times of 9.6-11.1 and 16.2-17.2 min were obtained for medium to high density and overconfluent cultures, respectively. In general, overconfluent cultures detached much slower, while their detachment rate was also decreased by the diluted harvesting solution. Moreover, several donors exhibited similar trends in cell detachment behaviour, with two clear outliers. Using the novel feature, measurements can be performed with an increased robustness, while the compact LFI design could pave the way for in situ monitoring in a variety of culture vessels, including bioreactors.
Collapse
|
5
|
Peptide-modified substrate enhances cell migration and migrasome formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112495. [PMID: 34857281 DOI: 10.1016/j.msec.2021.112495] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are cell-to-cell communication tools. Migrasomes are recently discovered microscale EVs formed at the rear ends of migrating cells, and thus are suggested to be involved in communicating with neighboring cells. In cell culture, peptide scaffolds on substrates have been used to demonstrate cellular function for regenerative medicine. In this study, we evaluated peptide scaffolds, including cell penetrating, virus fusion, and integrin-binding peptides, for their potential to enable the formation of migrasome-like vesicles. Through structural and functional analyses, we confirmed that the EVs formed on these peptide-modified substrates were migrasomes. We further noted that the peptide interface comprising cell-penetrating peptides (pVEC and R9) and virus fusion peptide (SIV) have superior properties for enabling cell migration and migrasome formation than fibronectin protein, integrin-binding peptide (RGD), or bare substrate. This is the first report of migrasome formation on peptide-modified substrates. Additionally, the combination of 95% RGD and 5% pVEC peptides provided a functional interface for effective migrasome formation and desorption of cells from the substrate via a simple ethylenediaminetetraacetic acid treatment. These results provide a functional substrate for the enhancement of migrasome formation and functional analysis.
Collapse
|
6
|
Dollet PE, Hsu MJ, Ambroise J, Rozzi M, Ravau J, André F, Evraerts J, Najimi M, Sokal E, Lombard C. Evaluation of Strategies Aimed at Improving Liver Progenitor Cell Rolling and Subsequent Adhesion to the Endothelium. Cell Transplant 2021; 29:963689720912707. [PMID: 32425073 PMCID: PMC7444224 DOI: 10.1177/0963689720912707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adult-derived human liver stem/progenitor cells (ADHLSCs) are a promising
alternative to orthotopic liver transplantation in the treatment of inborn
errors of metabolism. However, as is the case with many mesenchymal stromal
cells, ADHLSCs have shown a low level of engraftment, which could be explained
by the fact that they lack expression of selectin ligand and LFA-1 and only
slightly express VLA- 4, molecules that have been shown to be involved in cell
adhesion to the endothelium. In this paper, we have investigated strategies to
increase their rolling and adhesion during the homing process by (1) adding a
selectin ligand (Sialyl Lewis X) to their surface using
biotinyl-N-hydroxy-succinimide–streptavidin bridges, and
(2) protecting the adhesion proteins from trypsinization-induced damage using a
thermosensitive polymer for cell culture and a nonenzymatic cell dissociation
solution (CDS) for harvest. Despite increasing adhesion of ADHLSCs to E-selectin
during an adhesion test in vitro performed under shear stress,
the addition of Sialyl Lewis X did not increase adhesion to endothelial cells
under the same conditions. Cultivating cells on a thermosensitive polymer and
harvesting them with CDS increased their adhesion to endothelial cells under
noninflammatory conditions, compared to the use of trypsin. However, we were not
able to demonstrate any improvement in cell adhesion to the endothelium
following culture on polymer and harvest with CDS, suggesting that alternative
methods of improving engraftment still need to be evaluated.
Collapse
Affiliation(s)
- Pierre Edouard Dollet
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Mei Ju Hsu
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées (CTMA), Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Milena Rozzi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Joachim Ravau
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Floriane André
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Jonathan Evraerts
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Catherine Lombard
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| |
Collapse
|
7
|
Wong KU, Zhang A, Akhavan B, Bilek MM, Yeo GC. Biomimetic Culture Strategies for the Clinical Expansion of Mesenchymal Stromal Cells. ACS Biomater Sci Eng 2021. [PMID: 33599471 DOI: 10.1021/acsbiomaterials.0c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) typically require significant ex vivo expansion to achieve the high cell numbers required for research and clinical applications. However, conventional MSC culture on planar (2D) plastic surfaces has been shown to induce MSC senescence and decrease cell functionality over long-term proliferation, and usually, it has a high labor requirement, a high usage of reagents, and therefore, a high cost. In this Review, we describe current MSC-based therapeutic strategies and outline the important factors that need to be considered when developing next-generation cell expansion platforms. To retain the functional value of expanded MSCs, ex vivo culture systems should ideally recapitulate the components of the native stem cell microenvironment, which include soluble cues, resident cells, and the extracellular matrix substrate. We review the interplay between these stem cell niche components and their biological roles in governing MSC phenotype and functionality. We discuss current biomimetic strategies of incorporating biochemical and biophysical cues in MSC culture platforms to grow clinically relevant cell numbers while preserving cell potency and stemness. This Review summarizes the current state of MSC expansion technologies and the challenges that still need to be overcome for MSC clinical applications to be feasible and sustainable.
Collapse
Affiliation(s)
- Kuan Un Wong
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anyu Zhang
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Behnam Akhavan
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marcela M Bilek
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Giselle C Yeo
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
8
|
CXCR4 expression by mesenchymal stromal cells is lost after use of enzymatic dissociation agents, but preserved by use of non-enzymatic methods. Int J Hematol 2021; 113:5-9. [PMID: 33389659 DOI: 10.1007/s12185-020-03043-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 01/09/2023]
Abstract
In recent years, multipotent mesenchymal stromal cells (MSCs) have demonstrated tremendous potential for use in regenerative medicine. CXCR4, the receptor for CXCL12, is highly expressed by bone marrow (BM) MSCs and the CXCR4/CXCL12 axis has been shown to be important for migration and homing of BM-MSCs. Typically, MSCs used for clinical applications are collected after culture expansion using enzymatic methods, such as trypsin. Here, we compared different commercially available enzymatic and non-enzymatic methods for collection and dissociation of MSCs from culture plastics and their effects on CXCR4 expression by MSCs. We found that whereas non-enzymatic dissociation buffers and methods maintained CXCR4 expression, all tested enzymatic dissociation solutions dramatically decreased expression of CXCR4. We, therefore, strongly recommend the use of non-enzymatic dissociation methods, followed by filtration through a cell strainer to obtain single cell suspensions, in order to preserve maximal CXCR4 expression and optimal homing of cells.
Collapse
|
9
|
Dentin Conditioning Protocol for Regenerative Endodontic Procedures. J Endod 2020; 46:1099-1104. [DOI: 10.1016/j.joen.2020.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 01/14/2023]
|
10
|
Shakya A, Imado E, Nguyen PK, Matsuyama T, Horimoto K, Hirata I, Kato K. Oriented immobilization of basic fibroblast growth factor: Bioengineered surface design for the expansion of human mesenchymal stromal cells. Sci Rep 2020; 10:8762. [PMID: 32472000 PMCID: PMC7260242 DOI: 10.1038/s41598-020-65572-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/05/2020] [Indexed: 01/14/2023] Open
Abstract
E. coli expressed recombinant basic fibroblast growth factor (bFGF) with histidine-tag (bFGF-His) was immobilized onto the surface of a glass plate modified with a Ni(II)-chelated alkanethiol monolayer. The immobilization is expected to take place through the coordination between Ni(II) and His-tag. The bFGF-immobilized surface was exposed to citrate buffer solution to refold in situ the surface-immobilized bFGF. The secondary structure of immobilized bFGF-His was analyzed by solid-phase circular dichroism (CD) spectroscopy. Immortalized human mesenchymal stromal cells (hMSCs) were cultured on the bFGF-His-immobilized surface to examine their proliferation. CD spectroscopy revealed that the immobilized bFGF initially exhibited secondary structure rich in α-helix and that the spectrum was gradually transformed to exhibit the formation of β-strands upon exposure to citrate buffer solution, approaching to the spectrum of native bFGF. The rate of hMSC proliferation was 1.2-fold higher on the bFGF-immobilized surface treated with in situ citrate buffer, compared to the polystyrene surface. The immobilized bFGF-His treated in situ with citrate buffer solution seemed to be biologically active because its secondary structure approached its native state. This was well demonstrated by the cell culture experiments. From these results we conclude that immobilization of bFGF on the culture substrate serves to enhance proliferation of hMSCs.
Collapse
Affiliation(s)
- Ajay Shakya
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiji Imado
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Phuong Kim Nguyen
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Faculty of Odonto-Stomatology, Ho Chi Minh City University of Medicine and Pharmacy, Ho Chi Minh, Vietnam
| | - Tamamo Matsuyama
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kotaro Horimoto
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Isao Hirata
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koichi Kato
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
11
|
Multi-Spheroid-Loaded Human Acellular Dermal Matrix Carrier Preserves Its Spheroid Shape and Improves In Vivo Adipose-Derived Stem Cell Delivery and Engraftment. Tissue Eng Regen Med 2020; 17:271-283. [PMID: 32314311 DOI: 10.1007/s13770-020-00252-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Current in vivo adult stem cell delivery presents limited clinical effects due to poor engraftment and survival. To overcome current challenges in cell delivery and promote surgical cell delivery for soft tissue repair, a multi-spheroid-loaded thin sectioned acellular dermal matrix (tsADM) carrier which preserves loaded spheroids' three-dimensional (3D) structure, was developed. METHODS Adipose-derived stem cells (ASCs) were used for spheroid delivery. After generating spheroids in 3D cell culture dishes, spheroid plasticity and survival in-between coverslips were evaluated. Spheroids were loaded onto tsADM, their shape changes were followed up for 14 days, and then imaged. Spheroid adhesion stability to tsADM against shear stress was also evaluated. Finally, cell delivery efficacy was compared with cell-seeded tsADM by in vivo implantation and histological evaluation. RESULTS Spheroids withstood cyclic compression stress and maintained their 3D shape without fusion after 48 h of culture in-between coverslips. Cell survival improved when spheroids were cultured on tsADM in-between the coverslips. Spheroid-loaded tsADM with coverslips maintained their spheroid outline for 14 days of culture whereas without coverslips, the group lost their outline due to spreading after 4 days in culture. Spheroids loaded onto tsADMs were more stable after six rather than 3 days in culture. Spheroid-loaded tsADMs showed about a 2.96-fold higher ASCs transplantation efficacy than cell-seeded tsADMs after 2 weeks of in vivo transplantation. CONCLUSION These results indicate that transplantation of spheroid-loaded tsADMs significantly improved cell delivery. These findings suggest that a combined approach with other cells, drugs, and nanoparticles may improve cell delivery and therapeutic efficacy.
Collapse
|
12
|
Yokota K, Kubota K, Kobayakawa K, Saito T, Hara M, Kijima K, Maeda T, Katoh H, Ohkawa Y, Nakashima Y, Okada S. Pathological changes of distal motor neurons after complete spinal cord injury. Mol Brain 2019; 12:4. [PMID: 30626449 PMCID: PMC6327522 DOI: 10.1186/s13041-018-0422-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
Traumatic spinal cord injury (SCI) causes serious disruption of neuronal circuits that leads to motor functional deficits. Regeneration of disrupted circuits back to their original target is necessary for the restoration of function after SCI, but the pathophysiological condition of the caudal spinal cord has not been sufficiently studied. Here we investigated the histological and biological changes in the distal part of the injured spinal cord, using a mice model of complete thoracic SCI in the chronic stage (3 months after injury). Atrophic changes were widely observed in the injured spinal cord both rostral and caudal to the lesion, but the decrease in area was mainly in the white matter in the rostral spinal cord while both the white and gray matter decreased in the caudal spinal cord. The number of the motor neurons was maintained in the chronic phase of injury, but the number of presynaptic boutons decreased in the lumbar motor neurons caudal to the lesion. Using laser microdissection, to investigate gene expressions in motor neurons caudal to the lesion, we observed a decrease in the expressions of neuronal activity markers. However, we found that the synaptogenic potential of postsynapse molecules was maintained in the motor neurons after SCI with the expression of acetylcholine-related molecules actually higher after SCI. Collectively, our results show that the potential of synaptogenesis is maintained in the motor neurons caudal to the lesion, even though presynaptic input is decreased. Although researches into SCI concentrate their effort on the lesion epicenter, our findings suggest that the area caudal to the lesion could be an original therapeutic target for the chronically injured spinal cord.
Collapse
Affiliation(s)
- Kazuya Yokota
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Orthopaedic Surgery, Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka, 820-8508, Japan
| | - Kensuke Kubota
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Orthopaedic Surgery, Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka, 820-8508, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeyuki Saito
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masamitsu Hara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken Kijima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Maeda
- Department of Orthopaedic Surgery, Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka, 820-8508, Japan
| | - Hiroyuki Katoh
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Yasuyuki Ohkawa
- Department of Transcriptomics, JST-CREST, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
13
|
Brückner S, Zipprich A, Hempel M, Thonig A, Schwill F, Roderfeld M, Roeb E, Christ B. Improvement of portal venous pressure in cirrhotic rat livers by systemic treatment with adipose tissue–derived mesenchymal stromal cells. Cytotherapy 2017; 19:1462-1473. [DOI: 10.1016/j.jcyt.2017.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023]
|
14
|
|
15
|
Triantafillu UL, Nix JN, Kim Y. Novel fluid shear‐based dissociation device for improved single cell dissociation of spheroids and cell aggregates. Biotechnol Prog 2017; 34:293-298. [DOI: 10.1002/btpr.2528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/02/2017] [Indexed: 12/14/2022]
|
16
|
Najar M, Lagneaux L. Foreskin as a source of immunotherapeutic mesenchymal stromal cells. Immunotherapy 2017; 9:207-217. [PMID: 28128711 DOI: 10.2217/imt-2016-0093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have well-characterized properties and thus represent an attractive cell population for use in several therapeutic applications. Due to the limitations and inconveniences associated with classical sources of MSCs, the identification and characterization of alternative sources are required for safe and efficient cell therapy. The skin tissue is currently referred to as a reservoir of cells with therapeutically relevant functions. Historically considered biological waste, foreskin (FSK) is increasingly used to provide immunotherapeutic MSCs for medicinal products. This review discusses for the first time the nature and profile of MSCs within the foreskin tissue and, in particular, their immunobiology. A better immunological characterization and understanding of foreskin-derived cells will be critical for improving MSC-based cellular strategies for immunotherapeutic applications.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik n° 808, 1070 Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik n° 808, 1070 Brussels, Belgium
| |
Collapse
|
17
|
Hara M, Kobayakawa K, Ohkawa Y, Kumamaru H, Yokota K, Saito T, Kijima K, Yoshizaki S, Harimaya K, Nakashima Y, Okada S. Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. Nat Med 2017. [PMID: 28628111 DOI: 10.1038/nm.4354] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Central nervous system (CNS) injury transforms naive astrocytes into reactive astrocytes, which eventually become scar-forming astrocytes that can impair axonal regeneration and functional recovery. This sequential phenotypic change, known as reactive astrogliosis, has long been considered unidirectional and irreversible. However, we report here that reactive astrocytes isolated from injured spinal cord reverted in retrograde to naive astrocytes when transplanted into a naive spinal cord, whereas they formed astrocytic scars when transplanted into injured spinal cord, indicating the environment-dependent plasticity of reactive astrogliosis. We also found that type I collagen was highly expressed in the spinal cord during the scar-forming phase and induced astrocytic scar formation via the integrin-N-cadherin pathway. In a mouse model of spinal cord injury, pharmacological blockade of reactive astrocyte-type I collagen interaction prevented astrocytic scar formation, thereby leading to improved axonal regrowth and better functional outcomes. Our findings reveal environmental cues regulating astrocytic fate decisions, thereby providing a potential therapeutic target for CNS injury.
Collapse
Affiliation(s)
- Masamitsu Hara
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiromi Kumamaru
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuya Yokota
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeyuki Saito
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Kijima
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shingo Yoshizaki
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsumi Harimaya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Okada
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
18
|
Kirby GTS, Mills SJ, Vandenpoel L, Pinxteren J, Ting A, Short RD, Cowin AJ, Michelmore A, Smith LE. Development of Advanced Dressings for the Delivery of Progenitor Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3445-3454. [PMID: 28068055 DOI: 10.1021/acsami.6b14725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Culture surfaces that substantially reduce the degree of cell manipulation in the delivery of cell sheets to patients are described. These surfaces support the attachment, culture, and delivery of multipotent adult progenitor cells (MAPC). It was essential that the processes of attachment/detachment to the surface did not affect cell phenotype nor the function of the cultured cells. Both acid-based and amine-based surface coatings were generated from acrylic acid, propanoic acid, diaminopropane, and heptylamine precursors, respectively. While both functional groups supported cell attachment/detachment, amine coated surfaces gave optimal performance. X-ray photoelectron spectroscopy (XPS) showed that at a primary amine to carbon surface ratio of between 0.01 and 0.02, greater than 90% of attached cells were effectively transferred to a model wound bed. A dependence on primary amine concentration has not previously been reported. After 48 h of culture on the optimized amine surface, PCR, functional, and viability assays showed that MAPC retained their stem cell phenotype, full metabolic activity, and biological function. Consequently, in a proof of concept experiment, it was shown that this amine surface when coated onto a surgical dressing provides an effective and simple technology for the delivery of MAPC to murine dorsal excisional wounds, with MAPC delivery verified histologically. By optimizing for cell delivery using a combination of in vitro and in vivo techniques, we developed an effective surface for the delivery of MAPC in a clinically relevant format.
Collapse
Affiliation(s)
- Giles T S Kirby
- Cooperative Research Centre for Cell Therapy Manufacturing , North Terrace, Adelaide, South Australia 5000, Australia
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Stuart J Mills
- Cooperative Research Centre for Cell Therapy Manufacturing , North Terrace, Adelaide, South Australia 5000, Australia
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Liesbeth Vandenpoel
- Cooperative Research Centre for Cell Therapy Manufacturing , North Terrace, Adelaide, South Australia 5000, Australia
- ReGenesys BVBA, Bio-Incubator Leuven , Gaston Geenslaan 1, 3001 Heverlee, Belgium
| | - Jef Pinxteren
- Cooperative Research Centre for Cell Therapy Manufacturing , North Terrace, Adelaide, South Australia 5000, Australia
- ReGenesys BVBA, Bio-Incubator Leuven , Gaston Geenslaan 1, 3001 Heverlee, Belgium
| | - Anthony Ting
- Cooperative Research Centre for Cell Therapy Manufacturing , North Terrace, Adelaide, South Australia 5000, Australia
- Athersys, Inc. , Cleveland, Ohio 44115-2634, United States
| | - Robert D Short
- Cooperative Research Centre for Cell Therapy Manufacturing , North Terrace, Adelaide, South Australia 5000, Australia
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Allison J Cowin
- Cooperative Research Centre for Cell Therapy Manufacturing , North Terrace, Adelaide, South Australia 5000, Australia
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Andrew Michelmore
- Cooperative Research Centre for Cell Therapy Manufacturing , North Terrace, Adelaide, South Australia 5000, Australia
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
- School of Engineering, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Louise E Smith
- Cooperative Research Centre for Cell Therapy Manufacturing , North Terrace, Adelaide, South Australia 5000, Australia
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
19
|
Mesenchymal stem cell detachment with trace trypsin is superior to EDTA for in vitro chemotaxis and adhesion assays. Biochem Biophys Res Commun 2017; 484:656-661. [PMID: 28153723 DOI: 10.1016/j.bbrc.2017.01.171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/28/2017] [Indexed: 02/06/2023]
Abstract
Trypsin is frequently used to dissociate mesenchymal stem cells (MSCs) for in vitro adhesion and chemotaxis assays. However, its potential impact on surface receptor degradation is poorly understood. The purpose of this study was to evaluate the effect of trypsin-EDTA exposure versus PBS-EDTA on MSC surface receptor integrity and function. Primary human MSCs were detached with PBS-EDTA alone, or Cell Dissociation Buffer followed by 30 s exposure to 0.05% w/v trypsin-EDTA (trace trypsin method, TT), or 0.25% w/v trypsin exposure for 2 or 5 min. Cells were characterized for surface integrity of β1 integrin (CD29) and PDGF Receptor (PDGF-R), and assessed in vitro for adhesion to atelocollagen-coated surfaces and migration to PDGF-BB. PBS-EDTA detachment fully preserved receptor integrity but routinely detached only half of the adherent cells and led to cell aggregates that failed to adhere evenly across the Transwell migration insert. Both CD29 and PDGF-R were significantly degraded by 0.25% trypsin detachment for 2 or 5 min compared to the TT method or PBS-EDTA (p < 0.05). Cells migrated optimally to PDGF-BB when detached with the TT method (3.1-fold vs α-MEM, p = 0.01). Cells attached optimally to atelocollagen when detached using the TT method or PBS-EDTA (6- to 10-fold vs 0.25% trypsin, p < 0.01). CDB followed by trace trypsin-EDTA exposure is recommended over PBS-EDTA to produce a single-cell MSC suspension that preserves receptor integrity and more reproducible receptor-mediated responses.
Collapse
|
20
|
Herzig MC, Cap AP. Challenges in translating mesenchymal stem cell therapies for trauma and critical care. Transfusion 2016; 56:20S-5S. [PMID: 27079318 DOI: 10.1111/trf.13566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maryanne C Herzig
- Coagulation and Blood Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas
| | - Andrew P Cap
- Coagulation and Blood Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas
| |
Collapse
|
21
|
Lv D, Ma QH, Duan JJ, Wu HB, Zhao XL, Yu SC, Bian XW. Optimized dissociation protocol for isolating human glioma stem cells from tumorspheres via fluorescence-activated cell sorting. Cancer Lett 2016; 377:105-15. [PMID: 27091400 DOI: 10.1016/j.canlet.2016.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/12/2016] [Accepted: 04/12/2016] [Indexed: 12/28/2022]
Abstract
Fluorescence-activated cell sorting (FACS) based on the surface marker CD133 is the most common method for isolating glioma stem cells (GSCs) from heterogeneous glioma cell populations. Optimization of this method will have profound implications for the future of GSC research. Five commonly used digestion reagents, Liberase-TL, trypsin, TrypLE, Accutase, and non-enzymatic cell dissociation solution (NECDS), were used to dissociate glioma tumorspheres derived from two primary glioma specimens (091214 and 090116) and the cell lines U87 and T98G. The dissociation time, cell viability, retention of CD133, and stemness capacity were assessed. The results showed that single cells derived from the Liberase-TL (200 µg/ml) group exhibited high viability and less damage to the antigen CD133. However, the efficiency of NECDS for dissociating the tumorspheres into single cells was fairly low. Meanwhile, the use of this digestion reagent resulted in obvious cellular and antigenic impairments. Taken together, Liberase-TL (200 µg/ml) is an ideal reagent for isolating GSCs from tumorspheres. In contrast, the use of NECDS for such a protocol should be carefully considered.
Collapse
Affiliation(s)
- Donglai Lv
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China
| | - Qing-Hua Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China
| | - Jiang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China
| | - Hai-Bo Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China
| | - Xi-Long Zhao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China.
| |
Collapse
|
22
|
Effect of Microenvironment on Differentiation of Human Umbilical Cord Mesenchymal Stem Cells into Hepatocytes In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8916534. [PMID: 27088093 PMCID: PMC4764721 DOI: 10.1155/2016/8916534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 12/13/2022]
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are considered to be an ideal cell source for cell therapy of many diseases. The aim of this study was to investigate the contribution of the microenvironment to the hepatic differentiation potential of hUCMSCs in vitro and in vivo and to explore their therapeutic use in acute liver injury in rats. We established a new model to simulate the liver tissue microenvironment in vivo using liver homogenate supernatant (LHS) in vitro. This induced environment could drive hUCMSCs to differentiate into hepatocyte-like cells within 7 days. The differentiated cells expressed hepatocyte-specific markers and demonstrated hepatocellular functions. We also injected hUCMSCs into rats with CCl4-induced acute hepatic injury. The hUCMSCs were detected in the livers of recipient rats and expressed the human hepatocyte-specific markers, suggesting that hUCMSCs could differentiate into hepatocyte-like cells in vivo in the liver tissue microenvironment. Levels of biochemistry markers improved significantly after transplantation of hUCMSCs compared with the nontransplantation group (P < 0.05). In conclusion, this study demonstrated that the liver tissue microenvironment may contribute to the differentiation of hUCMSCs into hepatocytes both in vitro and in vivo.
Collapse
|
23
|
Affiliation(s)
- Sanjin Hosic
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Shashi K. Murthy
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Abigail N. Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
24
|
Braim SA, Shakesheff KM, Saunders BR, Alexander C. Thermoresponsive magnetic colloidal gels via surface-initiated polymerisation from functional microparticles. J Mater Chem B 2016; 4:962-972. [DOI: 10.1039/c5tb01739d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Novel magnetothermally responsive core–shell microparticles have been synthesized.
Collapse
Affiliation(s)
- S. A. Braim
- School of Pharmacy
- University of Nottingham
- Nottingham
- UK
| | | | | | - C. Alexander
- School of Pharmacy
- University of Nottingham
- Nottingham
- UK
| |
Collapse
|
25
|
Barckhausen C, Rice B, Baila S, Sensebé L, Schrezenmeier H, Nold P, Hackstein H, Rojewski MT. GMP-Compliant Expansion of Clinical-Grade Human Mesenchymal Stromal/Stem Cells Using a Closed Hollow Fiber Bioreactor. Methods Mol Biol 2016; 1416:389-412. [PMID: 27236685 DOI: 10.1007/978-1-4939-3584-0_23] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This chapter describes a method for GMP-compliant expansion of human mesenchymal stromal/stem cells (hMSC) from bone marrow aspirates, using the Quantum(®) Cell Expansion System from Terumo BCT. The Quantum system is a functionally closed, automated hollow fiber bioreactor system designed to reproducibly grow cells in either GMP or research laboratory environments. The chapter includes protocols for preparation of media, setup of the Quantum system, coating of the hollow fiber bioreactor, as well as loading, feeding, and harvesting of cells. We suggest a panel of quality controls for the starting material, the interim product, as well as the final product.
Collapse
Affiliation(s)
- Christina Barckhausen
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Philipps-University Marburg, Marburg, Germany
| | | | | | - Luc Sensebé
- UMR5273-U1031 STROMALab, CNRS, INSERM, Université Paul Sabatier Toulouse, EFS, Toulouse, France
| | - Hubert Schrezenmeier
- Institut für Klinische Transfusionsmedizin und Immungenetik Ulm, DRK-Blutspendedienst Baden-Württemberg - Hessen, Ulm, Germany
- Institut für Transfusionsmedizin, Universitätsklinikum Ulm, Helmholtzstraße 10, Ulm, 89081, Germany
| | - Philipp Nold
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Philipps-University Marburg, Marburg, Germany
| | - Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, University Hospital Giessen and Marburg, Justus-Liebig-University Giessen, Giessen, Germany
| | - Markus Thomas Rojewski
- Institut für Klinische Transfusionsmedizin und Immungenetik Ulm, DRK-Blutspendedienst Baden-Württemberg - Hessen, Ulm, Germany.
- Institut für Transfusionsmedizin, Universitätsklinikum Ulm, Helmholtzstraße 10, Ulm, 89081, Germany.
| |
Collapse
|
26
|
Engrafted Neural Stem/Progenitor Cells Promote Functional Recovery through Synapse Reorganization with Spared Host Neurons after Spinal Cord Injury. Stem Cell Reports 2015; 5:264-77. [PMID: 26190527 PMCID: PMC4618657 DOI: 10.1016/j.stemcr.2015.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/26/2022] Open
Abstract
Neural stem/progenitor cell (NSPC) transplantation is a promising therapeutic strategy for spinal cord injury (SCI). However, the efficacy of NSPC transplantation on severe SCI is poorly understood. We herein show that NSPC transplantation promotes functional recovery after mild and moderate SCI, but not after severe SCI. In severe SCI mice, there were few remaining host neurons within the range of NSPC engraftment; thus, we examined whether the co-distribution of transplant and host is a contributory factor for functional improvement. A cellular selective analysis using laser microdissection revealed that drug-induced host neuronal ablation considerably decreased the synaptogenic potential of the engrafted NSPCs. Furthermore, following host neuronal ablation, neuronal retrograde tracing showed less propriospinal relay connections bridging the lesion after NSPC transplantation. Our findings suggest that the interactive synaptic reorganization between engrafted NSPCs and spared host neurons is crucial for functional recovery, providing significant insight for establishing therapeutic strategies for severe SCI.
Collapse
|
27
|
Saeed A, Francini N, White L, Dixon J, Gould T, Rashidi H, Al Ghanami RC, Hruschka V, Redl H, Saunders BR, Alexander C, Shakesheff KM. A thermoresponsive and magnetic colloid for 3D cell expansion and reconfiguration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:662-8. [PMID: 25447597 PMCID: PMC4322481 DOI: 10.1002/adma.201403626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/23/2014] [Indexed: 05/23/2023]
Abstract
A dual thermoresponsive and magnetic colloidal gel matrix is described for enhanced stem-cell culture. The combined properties of the material allow enzyme-free passaging and expansion of mesenchymal stem cells, as well as isolation of cells postculture by the simple process of lowering the temperature and applying an external magnetic field. The colloidal gel can be reconfigured with thermal and magnetic stimuli to allow patterning of cells in discrete zones and to control movement of cells within the porous matrix during culture.
Collapse
Affiliation(s)
- Aram Saeed
- School of Pharmacy, University of East AngliaNorwich, NR4 7TJ, UK
| | - Nora Francini
- School of Pharmacy, University of NottinghamNottingham, NG7 2RD, UK
| | - Lisa White
- School of Pharmacy, University of NottinghamNottingham, NG7 2RD, UK
| | - James Dixon
- School of Pharmacy, University of NottinghamNottingham, NG7 2RD, UK
| | - Toby Gould
- School of Pharmacy, University of NottinghamNottingham, NG7 2RD, UK
| | - Hassan Rashidi
- School of Pharmacy, University of NottinghamNottingham, NG7 2RD, UK
| | | | - Veronika Hruschka
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyVienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyVienna, Austria
| | - Brian R Saunders
- School of Materials, University of ManchesterManchester, M13 9PL, UK
| | | | | |
Collapse
|