1
|
Xu MS, D'Elia A, Hadzimustafic N, Adil A, Karoubi G, Waddell TK, Haykal S. Bioengineering of vascularized porcine flaps using perfusion-recellularization. Sci Rep 2024; 14:7590. [PMID: 38555385 PMCID: PMC10981729 DOI: 10.1038/s41598-024-58095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Large volume soft tissue defects greatly impact patient quality of life and function while suitable repair options remain a challenge in reconstructive surgery. Engineered flaps could represent a clinically translatable option that may circumvent issues related to donor site morbidity and tissue availability. Herein, we describe the regeneration of vascularized porcine flaps, specifically of the omentum and tensor fascia lata (TFL) flaps, using a tissue engineering perfusion-decellularization and recellularization approach. Flaps were decellularized using a low concentration sodium dodecyl sulfate (SDS) detergent perfusion to generate an acellular scaffold with retained extracellular matrix (ECM) components while removing underlying cellular and nuclear contents. A perfusion-recellularization strategy allowed for seeding of acellular flaps with a co-culture of human umbilical vein endothelial cell (HUVEC) and mesenchymal stromal cells (MSC) onto the decellularized omentum and TFL flaps. Our recellularization technique demonstrated evidence of intravascular cell attachment, as well as markers of endothelial and mesenchymal phenotype. Altogether, our findings support the potential of using bioengineered porcine flaps as a novel, clinically-translatable strategy for future application in reconstructive surgery.
Collapse
Affiliation(s)
- Michael S Xu
- Latner Thoracic Surgery Research Laboratories, University Health Network, 200 Elizabeth Street 8N-869, Toronto, ON, M5G 2C4, Canada
| | - Andrew D'Elia
- Latner Thoracic Surgery Research Laboratories, University Health Network, 200 Elizabeth Street 8N-869, Toronto, ON, M5G 2C4, Canada
| | - Nina Hadzimustafic
- Latner Thoracic Surgery Research Laboratories, University Health Network, 200 Elizabeth Street 8N-869, Toronto, ON, M5G 2C4, Canada
| | - Aisha Adil
- Latner Thoracic Surgery Research Laboratories, University Health Network, 200 Elizabeth Street 8N-869, Toronto, ON, M5G 2C4, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, University Health Network, 200 Elizabeth Street 8N-869, Toronto, ON, M5G 2C4, Canada
| | - Thomas K Waddell
- Latner Thoracic Surgery Research Laboratories, University Health Network, 200 Elizabeth Street 8N-869, Toronto, ON, M5G 2C4, Canada
- Division of Thoracic Surgery, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Research Laboratories, University Health Network, 200 Elizabeth Street 8N-869, Toronto, ON, M5G 2C4, Canada.
- Plastic and Reconstructive Surgery, Smilow Cancer Hospital, Yale New Haven Health, New Haven, CT, USA.
| |
Collapse
|
2
|
Wang J, Jin X. Strategies for decellularization, re-cellularIzation and crosslinking in liver bioengineering. Int J Artif Organs 2024; 47:129-139. [PMID: 38253541 DOI: 10.1177/03913988231218566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Liver transplantation is the only definitive treatment for end-stage liver disease and its availability is restricted by organ donor shortages. The development of liver bioengineering provides the probability to create a functional alternative to reduce the gap in organ demand and supply. Decellularized liver scaffolds have been widely applied in bioengineering because they can mimic the native liver microenvironment and retain extracellular matrix (ECM) components. Multiple approaches including chemical, physical and biological methods have been developed for liver decellularization in current studies, but a full set of unified criteria has not yet been established. Each method has its advantages and drawbacks that influence the microstructure and ligand landscape of decellularized liver scaffolds. Optimizing a decellularization method to eliminate cell material while retaining as much of the ECM intact as possible is therefore important for biological scaffold applications. Furthermore, crosslinking strategies can improve the biological performance of scaffolds, including reinforcing biomechanics, delaying degradation in vivo and reducing immune rejection, which can better promote the integration of re-cellularized scaffolds with host tissue and influence the reconstruction process. In this review, we aim to present the different liver decellularization techniques, the crosslinking methods to improve scaffold characteristics with crosslinking and the preparation of soluble ECM.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Obstetrics and Gynecology, School of Clinical Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xiaojun Jin
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Shang Y, Wang G, Zhen Y, Liu N, Nie F, Zhao Z, Li H, An Y. Application of decellularization-recellularization technique in plastic and reconstructive surgery. Chin Med J (Engl) 2023; 136:2017-2027. [PMID: 36752783 PMCID: PMC10476794 DOI: 10.1097/cm9.0000000000002085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 02/09/2023] Open
Abstract
ABSTRACT In the field of plastic and reconstructive surgery, the loss of organs or tissues caused by diseases or injuries has resulted in challenges, such as donor shortage and immunosuppression. In recent years, with the development of regenerative medicine, the decellularization-recellularization strategy seems to be a promising and attractive method to resolve these difficulties. The decellularized extracellular matrix contains no cells and genetic materials, while retaining the complex ultrastructure, and it can be used as a scaffold for cell seeding and subsequent transplantation, thereby promoting the regeneration of diseased or damaged tissues and organs. This review provided an overview of decellularization-recellularization technique, and mainly concentrated on the application of decellularization-recellularization technique in the field of plastic and reconstructive surgery, including the remodeling of skin, nose, ears, face, and limbs. Finally, we proposed the challenges in and the direction of future development of decellularization-recellularization technique in plastic surgery.
Collapse
Affiliation(s)
- Yujia Shang
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Na Liu
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Fangfei Nie
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| |
Collapse
|
4
|
Zhou Q, Fan L, Li J. Liver Regeneration and Tissue Engineering. ARTIFICIAL LIVER 2021:73-94. [DOI: 10.1007/978-981-15-5984-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Advances in Hepatic Tissue Bioengineering with Decellularized Liver Bioscaffold. Stem Cells Int 2019; 2019:2693189. [PMID: 31198426 PMCID: PMC6526559 DOI: 10.1155/2019/2693189] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/08/2019] [Accepted: 03/17/2019] [Indexed: 12/28/2022] Open
Abstract
The burden of liver diseases continues to grow worldwide, and liver transplantation is the only option for patients with end-stage liver disease. This procedure is limited by critical issues, including the low availability of donor organs; thus, novel therapeutic strategies are greatly needed. Recently, bioengineering approaches using decellularized liver scaffolds have been proposed as a novel strategy to overcome these challenges. The aim of this systematic literature review was to identify the major advances in the field of bioengineering using decellularized liver scaffolds and to identify obstacles and challenges for clinical application. The main findings of the articles and each contribution for technique optimization were highlighted, including the protocols of perfusion and decellularization, duration, demonstration of quality control—scaffold acellularity, matrix composition, and preservation of growth factors—and tissue functionality after recellularization. In previous years, many advances have been made as this technique has evolved from studies in animal models to human livers. As the field develops and this promising technique has become much more feasible, many challenges remain, including the selection of appropriate cell types for recellularization, route of cell administration, cell-seeding protocol, and scalability that must be standardized prior to clinical application.
Collapse
|