1
|
Laggner M, Gugerell A, Bachmann C, Hofbauer H, Vorstandlechner V, Seibold M, Gouya Lechner G, Peterbauer A, Madlener S, Demyanets S, Sorgenfrey D, Ostler T, Erb M, Mildner M, Ankersmit HJ. Reproducibility of GMP-compliant production of therapeutic stressed peripheral blood mononuclear cell-derived secretomes, a novel class of biological medicinal products. Stem Cell Res Ther 2020; 11:9. [PMID: 31900195 PMCID: PMC6942406 DOI: 10.1186/s13287-019-1524-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The recent concept of secretome-based tissue regeneration has profoundly altered the field of regenerative medicine and offers promising novel therapeutic options. In contrast to medicinal products with a single active substance, cell-derived secretomes comprise pleiotropic bioactive ingredients, representing a major obstacle for reproducible drug product efficacy and warranting patient safety. Good manufacturing practice (GMP)-compliant production guarantees high batch-to-batch consistency and reproducible efficacy of biological medicinal products, but different batches of cellular secretomes produced under GMP have not been compared yet, and suitable quality control parameters have not been established. To this end, we analyzed diverse biological and functional parameters of different batches produced under GMP of the secretome obtained from γ-irradiated peripheral blood mononuclear cells with proven tissue regenerative properties in infarcted myocardium, stroke, spinal cord injury, and skin wounds. METHODS We quantified key secretome ingredients, including cytokines, lipids, and extracellular vesicles, and functionally assessed potency in tube formation assay, ex vivo aortic ring sprouting assay, and cell-based protein and reporter gene assays. Furthermore, we determined secretome stability in different batches after 6 months of storage at various ambient temperatures. RESULTS We observed that inter-batch differences in the bioactive components and secretome properties were small despite considerable differences in protein concentrations and potencies between individual donor secretomes. Stability tests showed that the analytical and functional properties of the secretomes remained stable when lyophilisates were stored at temperatures up to + 5 °C for 6 months. CONCLUSIONS We are the first to demonstrate the consistent production of cell-derived, yet cell-free secretome as a biological medicinal product. The results from this study provide the basis for selecting appropriate quality control parameters for GMP-compliant production of therapeutic cell secretomes and pave the way for future clinical trials employing secretomes in tissue regenerative medicine.
Collapse
Affiliation(s)
- Maria Laggner
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | - Alfred Gugerell
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | | | - Helmut Hofbauer
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | - Vera Vorstandlechner
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | | | | | - Anja Peterbauer
- Austrian Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Sibylle Madlener
- Molecular Neuro-Oncology, Department of Pediatrics and Adolescent Medicine and Institute of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Svitlana Demyanets
- Department for Laboratory Medicine at the Medical University of Vienna, Vienna, Austria
| | | | - Tobias Ostler
- SYNLAB Analytics and Services Switzerland AG, Birsfelden, Switzerland
| | - Michael Erb
- SYNLAB Analytics and Services Switzerland AG, Birsfelden, Switzerland
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.
- Aposcience AG, Vienna, Austria.
| |
Collapse
|
2
|
Pool M, Eertman T, Sierra Parraga J, 't Hart N, Roemeling-van Rhijn M, Eijken M, Jespersen B, Reinders M, Hoogduijn M, Ploeg R, Leuvenink H, Moers C. Infusing Mesenchymal Stromal Cells into Porcine Kidneys during Normothermic Machine Perfusion: Intact MSCs Can Be Traced and Localised to Glomeruli. Int J Mol Sci 2019; 20:ijms20143607. [PMID: 31340593 PMCID: PMC6678394 DOI: 10.3390/ijms20143607] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Normothermic machine perfusion (NMP) of kidneys offers the opportunity to perform active interventions, such as the addition of mesenchymal stromal cells (MSCs), to an isolated organ prior to transplantation. The purpose of this study was to determine whether administering MSCs to kidneys during NMP is feasible, what the effect of NMP is on MSCs and whether intact MSCs are retained in the kidney and to which structures they home. Viable porcine kidneys were obtained from a slaughterhouse. Kidneys were machine perfused during 7 h at 37 °C. After 1 h of perfusion either 0, 105, 106 or 107 human adipose tissue derived MSCs were added. Additional ex vivo perfusions were conducted with fluorescent pre-labelled bone-marrow derived MSCs to assess localisation and survival of MSCs during NMP. After NMP, intact MSCs were detected by immunohistochemistry in the lumen of glomerular capillaries, but only in the 107 MSC group. The experiments with fluorescent pre-labelled MSCs showed that only a minority of glomeruli were positive for infused MSCs and most of these glomeruli contained multiple MSCs. Flow cytometry showed that the number of infused MSCs in the perfusion circuit steeply declined during NMP to approximately 10%. In conclusion, the number of circulating MSCs in the perfusate decreases rapidly in time and after NMP only a small portion of the MSCs are intact and these appear to be clustered in a minority of glomeruli.
Collapse
Affiliation(s)
- Merel Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center, 9713 GZ Groningen, The Netherlands.
| | - Tim Eertman
- Department of Surgery-Organ Donation and Transplantation, University Medical Center, 9713 GZ Groningen, The Netherlands
| | - Jesus Sierra Parraga
- Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Nils 't Hart
- Department of Pathology, University Medical Center, 9713 GZ Groningen, The Netherlands
| | | | - Marco Eijken
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Bente Jespersen
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Marlies Reinders
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martin Hoogduijn
- Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Rutger Ploeg
- Department of Surgery-Organ Donation and Transplantation, University Medical Center, 9713 GZ Groningen, The Netherlands
- Oxford Transplant Centre, University of Oxford, OX3 7LJ Oxford, UK
| | - Henri Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center, 9713 GZ Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
3
|
Gugjoo MB, Amarpal. Mesenchymal stem cell research in sheep: Current status and future prospects. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Tanaka E, Ogawa Y, Mukai T, Sato Y, Hamazaki T, Nagamura-Inoue T, Harada-Shiba M, Shintaku H, Tsuji M. Dose-Dependent Effect of Intravenous Administration of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Neonatal Stroke Mice. Front Neurol 2018; 9:133. [PMID: 29568282 PMCID: PMC5852073 DOI: 10.3389/fneur.2018.00133] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Neonatal brain injury induced by stroke causes significant disability, including cerebral palsy, and there is no effective therapy for stroke. Recently, mesenchymal stem cells (MSCs) have emerged as a promising tool for stem cell-based therapies. In this study, we examined the safety and efficacy of intravenously administered human umbilical cord-derived MSCs (UC-MSCs) in neonatal stroke mice. Pups underwent permanent middle cerebral artery occlusion at postnatal day 12 (P12), and low-dose (1 × 104) or high-dose (1 × 105) UC-MSCs were administered intravenously 48 h after the insult (P14). To evaluate the effect of the UC-MSC treatment, neurological behavior and cerebral blood flow were measured, and neuroanatomical analysis was performed at P28. To investigate the mechanisms of intravenously injected UC-MSCs, systemic blood flowmetry, in vivo imaging and human brain-derived neurotrophic factor (BDNF) measurements were performed. Functional disability was significantly improved in the high-dose UC-MSC group when compared with the vehicle group, but cerebral blood flow and cerebral hemispheric volume were not restored by UC-MSC therapy. The level of exogenous human BDNF was elevated only in the cerebrospinal fluid of one pup 24 h after UC-MSC injection, and in vivo imaging revealed that most UC-MSCs were trapped in the lungs and disappeared in a week without migration toward the brain or other organs. We found that systemic blood flow was stable over the 10 min after cell administration and that there were no differences in mortality among the groups. Immunohistopathological assessment showed that the percent area of Iba1-positive staining in the peri-infarct cortex was significantly reduced with the high-dose UC-MSC treatment compared with the vehicle treatment. These results suggest that intravenous administration of UC-MSCs is safe for a mouse model of neonatal stroke and improves dysfunction after middle cerebral artery occlusion by modulating the microglial reaction in the peri-infarct cortex.
Collapse
Affiliation(s)
- Emi Tanaka
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan.,Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuko Ogawa
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takeo Mukai
- Department of Cell Processing and Transfusion, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Takashi Hamazaki
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mariko Harada-Shiba
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
5
|
Abstract
Kidney transplantation is the best treatment for end-stage renal disease, but its implementation is limited by organ shortage and immune rejection. Side effects of current immunosuppressive drugs, such as nephrotoxicity, opportunistic infection, and tumorigenic potential, influence long-term graft outcomes. In recent years, continued research and subsequent discoveries concerning the properties and potential utilization of mesenchymal stem cells (MSCs) have aroused considerable interest and expectations. Biological characteristics of MSCs, including multi-lineage differentiation, homing potential, paracrine effect and immunomodulation, have opened new horizons for applications in kidney transplantation. However, many studies have shown that the biological activity of MSCs depends on internal inflammatory conditions, and the safety and efficacy of the clinical application of MSCs remain controversial. This review summarizes the findings of a large number of studies and aims to provide an objective viewpoint based on a comprehensive analysis of the presently established benefits and obstacles of implementing MSC-based therapy in kidney transplantation, and to promote its clinical translation.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, PR China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, PR China.
| |
Collapse
|
6
|
A discussion on adult mesenchymal stem cells for drug delivery: pros and cons. Ther Deliv 2015; 6:1335-46. [DOI: 10.4155/tde.15.80] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are emerging as candidates for drug delivery to treat numerous diseases. Their ease of isolation, expansion and reduced ethical concern, coupled with their ‘plastic’ immune functions and homing abilities make MSCs an appealing choice as cellular vehicle for drug delivery, including the delivery of RNA. However, while MSCs are currently listed for thousands of clinical trials, there are many confounding factors that have yet to be elucidated. In this review, we address many of the benefits of MSCs as therapeutic agents, and discuss confounding factors that require further scientific exploration.
Collapse
|