1
|
Tanna J, McCann CD, Smith R, Pitino A, Asgedom A, Kong SL, Weiner YL, Bushnell K, Webb J, Hanley PJ. Environmental monitoring of current good manufacturing practices cleanroom facilities for manufacturing of cellular therapy products in an academic hospital setting. Cytotherapy 2024; 26:1421-1428. [PMID: 38944797 PMCID: PMC11471380 DOI: 10.1016/j.jcyt.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 07/01/2024]
Abstract
As the field of cell and gene therapy (CGT) continues to grow, so too must the infrastructure and regulatory guidance supporting the manufacture of these potentially life-saving products-especially early-phase products manufactured at an increasing number of academic or hospital-based facilities providing decentralized (or point of care) manufacturing. An important component of current good manufacturing practices, including those regulating cell and gene therapies, is the establishment of an effective environmental monitoring (EM) program. While several guidelines for establishing an EM program are available, these guidelines do not specifically address the unique aspects of manufacturing CGT products and they do not provide real-world evidence demonstrating the effectiveness of the program. Here, we describe the establishment and evolution of an EM program in a cell therapy manufacturing facility at an academic hospital. With 10 years of EM data, we analyze the effectiveness for identifying trends in environmental conditions and highlight important findings, with the aim of providing practical evidence and guidance for the development of future early-phase EM programs.
Collapse
Affiliation(s)
- Jay Tanna
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA; Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Rhonda Smith
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Adriana Pitino
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Almaz Asgedom
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Srey Leap Kong
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA
| | - You Lian Weiner
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Kathryn Bushnell
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Jennifer Webb
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA; Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA; Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA.
| |
Collapse
|
2
|
Nipper AJ, Warren EAK, Liao KS, Liu HC, Michikawa C, Porter CE, Wells GA, Villanueva M, Brasil da Costa FH, Veeramachaneni R, Villanueva H, Suzuki M, Sikora AG. Chick Embryo Chorioallantoic Membrane as a Platform for Assessing the In Vivo Efficacy of Chimeric Antigen Receptor T-cell Therapy in Solid Tumors. Immunohorizons 2024; 8:598-605. [PMID: 39225630 PMCID: PMC11374747 DOI: 10.4049/immunohorizons.2400059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The fertilized chicken egg chorioallantoic membrane (CAM), a highly vascularized membrane nourishing the developing embryo, also supports rapid growth of three-dimensional vascularized tumors from engrafted cells and tumor explants. Because murine xenograft models suffer limitations of time, cost, and scalability, we propose CAM tumors as a rapid, efficient screening tool for assessing anti-tumor efficacy of chimeric Ag receptor (CAR) T cells against solid tumors. We tested the efficacy of human epidermal growth factor receptor 2 (HER2)-specific CAR T cells against luminescent, HER2-expressing (FaDu, SCC-47) or HER2-negative (MDA-MB-468) CAM-engrafted tumors. Three days after tumor engraftment, HER2-specific CAR T cells were applied to tumors grown on the CAM. Four days post-CAR T cell treatment, HER2-expressing FaDu and SCC-47 tumors treated with CAR T showed reduced viable cancer cells as assessed by luciferase activity. This reduction in viable tumor cells was confirmed by histology, with lower Ki-67 staining observed in CAR T cell-treated tumors relative to T cell-treated controls. Persistence of CAR T in CAM and tumor tissue 4 days post-treatment was confirmed by CD3 staining. Altogether, our findings support further development of the chick CAM as an in vivo system for rapid, scalable screening of CAR T cell efficacy against human solid tumors.
Collapse
Affiliation(s)
- Allison J Nipper
- Department of Head and Neck Surgery, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Emilie A K Warren
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX
| | - Kershena S Liao
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX
| | - Hsuan-Chen Liu
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX
| | - Chieko Michikawa
- Department of Head and Neck Surgery, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Caroline E Porter
- Department of Family and Community Medicine, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | | | - Mariana Villanueva
- Department of Family and Community Medicine, Baylor College of Medicine, Houston, TX
| | | | - Ratna Veeramachaneni
- Department of Head and Neck Surgery, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Hugo Villanueva
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - Masataka Suzuki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Texas Children's Hospital, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Andrew G Sikora
- Department of Head and Neck Surgery, University of Texas M.D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
3
|
Lazarski CA, Hanley PJ. Review of flow cytometry as a tool for cell and gene therapy. Cytotherapy 2024; 26:103-112. [PMID: 37943204 PMCID: PMC10872958 DOI: 10.1016/j.jcyt.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Quality control testing and analytics are critical for the development and manufacture of cell and gene therapies, and flow cytometry is a key quality control and analytical assay that is used extensively. However, the technical scope of characterization assays and safety assays must keep apace as the breadth of cell therapy products continues to expand beyond hematopoietic stem cell products into producing novel adoptive immune therapies and gene therapy products. Flow cytometry services are uniquely positioned to support the evolving needs of cell therapy facilities, as access to flow cytometers, new antibody clones and improved fluorochrome reagents becomes more egalitarian. This report will outline the features, logistics, limitations and the current state of flow cytometry within the context of cellular therapy.
Collapse
Affiliation(s)
- Christopher A Lazarski
- Program for Cell Enhancement and Technology for Immunotherapy, Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; The George Washington University, Washington, DC, USA.
| | - Patrick J Hanley
- Program for Cell Enhancement and Technology for Immunotherapy, Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; The George Washington University, Washington, DC, USA.
| |
Collapse
|
4
|
Johanna I, Daudeij A, Devina F, Nijenhuis C, Nuijen B, Romberg B, de Haar C, Haanen J, Dolstra H, Bremer E, Sebestyen Z, Straetemans T, Jedema I, Kuball J. Basics of advanced therapy medicinal product development in academic pharma and the role of a GMP simulation unit. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 20:100411. [PMID: 38192616 PMCID: PMC10772236 DOI: 10.1016/j.iotech.2023.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Following successes of authorized chimeric antigen receptor T-cell products being commercially marketed in the United States and European Union, product development of T-cell-based cancer immunotherapy consisting of cell-based advanced therapy medicinal products (ATMPs) has gained further momentum. Due to their complex characteristics, pharmacological properties of living cell products are, in contrast to classical biological drugs such as small molecules, more difficult to define. Despite the availability of many new advanced technologies that facilitate ATMP manufacturing, translation from research-grade to clinical-grade manufacturing in accordance with Good Manufacturing Practices (cGMP) needs a thorough product development process in order to maintain the same product characteristics and activity of the therapeutic product after full-scale clinical GMP production as originally developed within a research setting. The same holds true for transferring a fully developed GMP-grade production process between different GMP facilities. Such product development from the research to GMP-grade manufacturing and technology transfer processes of established GMP-compliant procedures between facilities are challenging. In this review, we highlight some of the main obstacles related to the product development, manufacturing process, and product analysis, as well as how these hinder rapid access to ATMPs. We elaborate on the role of academia, also referred to as 'academic pharma', and the added value of GMP production and GMP simulation facilities to keep innovation moving by reducing the development time and to keep final production costs reasonable.
Collapse
Affiliation(s)
- I. Johanna
- Department of Hematology, University Medical Center Utrecht, Utrecht
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - A. Daudeij
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - F. Devina
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - C. Nijenhuis
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Amsterdam
| | - B. Nuijen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Amsterdam
| | - B. Romberg
- Department of Pharmacy, University Medical Center Utrecht, Utrecht
| | - C. de Haar
- Department of Pharmacy, University Medical Center Utrecht, Utrecht
| | - J. Haanen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
| | - H. Dolstra
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen
| | - E. Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Z. Sebestyen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - T. Straetemans
- Department of Hematology, University Medical Center Utrecht, Utrecht
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - I. Jedema
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
| | - J. Kuball
- Department of Hematology, University Medical Center Utrecht, Utrecht
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| |
Collapse
|
5
|
Mueller KP, Piscopo NJ, Forsberg MH, Saraspe LA, Das A, Russell B, Smerchansky M, Cappabianca D, Shi L, Shankar K, Sarko L, Khajanchi N, La Vonne Denne N, Ramamurthy A, Ali A, Lazzarotto CR, Tsai SQ, Capitini CM, Saha K. Production and characterization of virus-free, CRISPR-CAR T cells capable of inducing solid tumor regression. J Immunother Cancer 2022; 10:e004446. [PMID: 36382633 PMCID: PMC9454086 DOI: 10.1136/jitc-2021-004446] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cells have demonstrated high clinical response rates against hematological malignancies (e.g., CD19+ cancers) but have shown limited activity in patients with solid tumors. Recent work showed that precise insertion of a CAR at a defined locus improves treatment outcomes in the context of a CD19 CAR; however, it is unclear if such a strategy could also affect outcomes in solid tumors. Furthermore, CAR manufacturing generally relies on viral vectors for gene delivery, which comprise a complex and resource-intensive part of the manufacturing supply chain. METHODS Anti-GD2 CAR T cells were generated using CRISPR/Cas9 within 9 days using recombinant Cas9 protein and nucleic acids, without any viral vectors. The CAR was specifically targeted to the T cell receptor alpha constant gene (TRAC). T cell products were characterized at the level of the genome, transcriptome, proteome, and secretome using CHANGE-seq, targeted next-generation sequencing, scRNA-seq, spectral cytometry, and ELISA assays, respectively. Functionality was evaluated in vivo in an NSG™ xenograft neuroblastoma model. RESULTS In comparison to retroviral CAR T cells, virus-free CRISPR CAR (VFC-CAR) T cells exhibit TRAC-targeted genomic integration of the CAR transgene, elevation of transcriptional and protein characteristics associated with a memory-like phenotype, and low tonic signaling prior to infusion arising in part from the knockout of the T cell receptor. On exposure to the GD2 target antigen, anti-GD2 VFC-CAR T cells exhibit specific cytotoxicity against GD2+ cells in vitro and induce solid tumor regression in vivo. VFC-CAR T cells demonstrate robust homing and persistence and decreased exhaustion relative to retroviral CAR T cells against a human neuroblastoma xenograft model. CONCLUSIONS This study leverages virus-free genome editing technology to generate CAR T cells featuring a TRAC-targeted CAR, which could inform manufacturing of CAR T cells to treat cancers, including solid tumors.
Collapse
Affiliation(s)
- Katherine P Mueller
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicole J Piscopo
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew H Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Louise A Saraspe
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amritava Das
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brittany Russell
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Madeline Smerchansky
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dan Cappabianca
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lei Shi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Keerthana Shankar
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Sarko
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Namita Khajanchi
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nina La Vonne Denne
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Apoorva Ramamurthy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adeela Ali
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Cicera R Lazzarotto
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shengdar Q Tsai
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Luginbuehl V, Abraham E, Kovar K, Flaaten R, Müller AMS. Better by design: What to expect from novel CAR-engineered cell therapies? Biotechnol Adv 2022; 58:107917. [PMID: 35149146 DOI: 10.1016/j.biotechadv.2022.107917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
Chimeric antigen receptor (CAR) technology, and CAR-T cells in particular, have emerged as a new and powerful tool in cancer immunotherapy since demonstrating efficacy against several hematological malignancies. However, despite encouraging clinical results of CAR-T cell therapy products, a significant proportion of patients do not achieve satisfactory responses, or relapse. In addition, CAR-T cell applications to solid tumors is still limited due to the tumor microenvironment and lack of specifically targetable tumor antigens. All current products on the market, as well as most investigational CAR-T cell therapies, are autologous, using the patient's own peripheral blood mononuclear cells as starting material to manufacture a patient-specific batch. Alternative cell sources are, therefore, under investigation (e.g. allogeneic cells from an at least partially human leukocyte antigen (HLA)-matched healthy donor, universal "third-party" cells from a non-HLA-matched donor, cord blood-derived cells, immortalized cell lines or cells differentiated from induced pluripotent stem cells). However, genetic modifications of CAR-engineered cells, bioprocesses used to expand cells, and improved supply chains are still complex and costly. To overcome drawbacks associated with CAR-T technologies, novel CAR designs have been used to genetically engineer cells derived from alpha beta (αβ) T cells, other immune cells such as natural killer (NK) cells, gamma delta (γδ) T cells, macrophages or dendritic cells. This review endeavours to trigger ideas on the next generation of CAR-engineered cell therapies beyond CAR-T cells and, thus, will enable effective, safe and affordable therapies for clinical management of cancer. To achieve this, we present a multidisciplinary overview, addressing a wide range of critical aspects: CAR design, development and manufacturing technologies, pharmacological concepts and clinical applications of CAR-engineered cell therapies. Each of these fields employs a large number of ground-breaking scientific advances, where coordinated and complex process and product development occur at their interfaces.
Collapse
Affiliation(s)
- Vera Luginbuehl
- Novartis Oncology, Cell & Gene Therapy, Novartis Pharma Schweiz AG, Rotkreuz, Switzerland.
| | - Eytan Abraham
- Personalized Medicine Lonza Pharma&Biotech, Lonza Ltd., Walkersville, MD, USA
| | | | - Richard Flaaten
- Novartis Oncology, Cell & Gene Therapy, Novartis Norge AS, Oslo, Norway
| | - Antonia M S Müller
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Dave H, Terpilowski M, Mai M, Toner K, Grant M, Stanojevic M, Lazarski C, Shibli A, Bien SA, Maglo P, Hoq F, Schore R, Glenn M, Hu B, Hanley PJ, Ambinder R, Bollard CM. Tumor-associated antigen-specific T cells with nivolumab are safe and persist in vivo in relapsed/refractory Hodgkin lymphoma. Blood Adv 2022; 6:473-485. [PMID: 34495306 PMCID: PMC8791594 DOI: 10.1182/bloodadvances.2021005343] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/25/2021] [Indexed: 11/20/2022] Open
Abstract
Hodgkin lymphoma (HL) Reed Sternberg cells express tumor-associated antigens (TAA) that are potential targets for cellular therapies. We recently demonstrated that TAA-specific T cells (TAA-Ts) targeting WT1, PRAME, and Survivin were safe and associated with prolonged time to progression in solid tumors. Hence, we evaluated whether TAA-Ts when given alone or with nivolumab were safe and could elicit antitumor effects in vivo in patients with relapsed/refractory (r/r) HL. Ten patients were infused with TAA-Ts (8 autologous and 2 allogeneic) for active HL (n = 8) or as adjuvant therapy after hematopoietic stem cell transplant (n = 2). Six patients received nivolumab priming before TAA-Ts and continued until disease progression or unacceptable toxicity. All 10 products recognized 1 or more TAAs and were polyfunctional. Patients were monitored for safety for 6 weeks after the TAA-Ts and for response until disease progression. The infusions were safe with no clear dose-limiting toxicities. Patients receiving TAA-Ts as adjuvant therapy remain in continued remission at 3+ years. Of the 8 patients with active disease, 1 patient had a complete response and 7 had stable disease at 3 months, 3 of whom remain with stable disease at 1 year. Antigen spreading and long-term persistence of TAA-Ts in vivo were observed in responding patients. Nivolumab priming impacted TAA-T recognition and persistence. In conclusion, treatment of patients with r/r HL with TAA-Ts alone or in combination with nivolumab was safe and produced promising results. This trial was registered at www.clinicaltrials.gov as #NCT022039303 and #NCT03843294.
Collapse
Affiliation(s)
- Hema Dave
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
- Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC
| | - Madeline Terpilowski
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
| | - Mimi Mai
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
| | - Keri Toner
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
- Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC
| | - Melanie Grant
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Maja Stanojevic
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
| | - Christopher Lazarski
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
| | - Abeer Shibli
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
| | | | - Philip Maglo
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
| | - Fahmida Hoq
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
- Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC
| | - Reuven Schore
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
- Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC
| | - Martha Glenn
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute/University of Utah, Salt Lake City, UT; and
| | - Boyu Hu
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute/University of Utah, Salt Lake City, UT; and
| | - Patrick J. Hanley
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
- Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC
| | | | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
- Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
8
|
Kim SH, Park HE, Jeong SU, Moon JH, Lee YR, Kim JK, Kong H, Park CS, Lee CK. Induction of Peptide-specific CTL Activity and Inhibition of Tumor Growth Following Immunization with Nanoparticles Coated with Tumor Peptide-MHC-I Complexes. Immune Netw 2022; 21:e44. [PMID: 35036031 PMCID: PMC8733191 DOI: 10.4110/in.2021.21.e44] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/11/2023] Open
Abstract
Tumor peptides associated with MHC class I molecules or their synthetic variants have attracted great attention for their potential use as vaccines to induce tumor-specific CTLs. However, the outcome of clinical trials of peptide-based tumor vaccines has been disappointing. There are various reasons for this lack of success, such as difficulties in delivering the peptides specifically to professional Ag-presenting cells, short peptide half-life in vivo, and limited peptide immunogenicity. We report here a novel peptide vaccination strategy that efficiently induces peptide-specific CTLs. Nanoparticles (NPs) were fabricated from a biodegradable polymer, poly(D,L-lactic-co-glycolic acid), attached to H-2Kb molecules, and then the natural peptide epitopes associated with the H-2Kb molecules were exchanged with a model tumor peptide, SIINFEKL (OVA257-268). These NPs were efficiently phagocytosed by immature dendritic cells (DCs), inducing DC maturation and activation. In addition, the DCs that phagocytosed SIINFEKL-pulsed NPs potently activated SIINFEKL-H-2Kb complex-specific CD8+ T cells via cross-presentation of SIINFEKL. In vivo studies showed that intravenous administration of SIINFEKL-pulsed NPs effectively generated SIINFEKL-specific CD8+ T cells in both normal and tumor-bearing mice. Furthermore, intravenous administration of SIINFEKL-pulsed NPs into EG7.OVA tumor-bearing mice almost completely inhibited the tumor growth. These results demonstrate that vaccination with polymeric NPs coated with tumor peptide-MHC-I complexes is a novel strategy for efficient induction of tumor-specific CTLs.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Ha-Eun Park
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Seong-Un Jeong
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Jun-Hyeok Moon
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Young-Ran Lee
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Hyunseok Kong
- Department of Animal Biotechnology and Resource, Sahmyook University, Seoul 01795, Korea
| | - Chan-Su Park
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chong-Kil Lee
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
9
|
Affiliation(s)
- Patrick J Hanley
- Program for Cell Enhancement and Technology for Immunotherapy, Center for Cancer and Immunology Research, Center for Cancer and Blood Disorders, Children's National Health System, and The George Washington University, Washington, DC 20010, USA.
| |
Collapse
|