1
|
Tomoda T, Nishimura A, Kamiya T, Inoue K, Katano H, Iida S, Hoshino A, Isoda T, Imai K, Kajiwara M, Takagi M, Kanegane H, Hanaoka N, Morio T. Immune reconstitution and cidofovir administration rescue human adenovirus hepatitis after allogeneic hematopoietic cell transplantation. Transpl Immunol 2024; 86:102093. [PMID: 39032616 DOI: 10.1016/j.trim.2024.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Human adenovirus infection (HAdV) may be fatal in patients undergoing allogeneic hematopoietic cell transplantation (HCT). Cidofovir is effective in only a part of the post-HCT HAdV infection. Therefore, posttransplant immune reconstitution is important for HAdV clearance. We describe the detailed immune reconstitution and response of adenovirus-specific T cells in a patient with inborn errors of immunity who had disseminated HAdV infection with hepatitis post-HCT and was treated with cidofovir. Though the patient received cidofovir for only 19 days starting from Day 72 after HCT because of renal dysfunction, we observed T-cell reconstitution, a decrease in HAdV copy number, and amelioration of the symptoms of HAdV infection after Day 90. We initially observed expanded NK and CD8+CD45RO+ memory subsets and later gradual increase of naïve T cells eveloped after cessation of cidofovir treatment. An increase in adenovirus-specific IFN-γ secretion from 2 to 4 months after HCT was confirmed by ELISpot assay. The progression of immune reconstitution and cidofovir treatment are considered to have contributed to survival in this patient. Optimization of transplantation methods, prompt appropriate antiviral medication, and virus-specific T-cell therapy would be necessary as the better strategy for systemic HAdV infection.
Collapse
Affiliation(s)
- Takahiro Tomoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Center for Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University (TMDU) Hospital, Tokyo, Japan
| | - Akira Nishimura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiro Kamiya
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Clinical Research Center, Tokyo Medical and Dental University (TMDU) Hospital, Tokyo, Japan.
| | - Kumi Inoue
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Michiko Kajiwara
- Center for Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University (TMDU) Hospital, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nozomu Hanaoka
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
2
|
Davison GM, Opie JJ, Davids SFG, Mohammed R, Novitzky N. Early recovery of natural killer cells post T-cell depleted allogeneic stem cell transplantation using alemtuzumab "in the bag". Transpl Immunol 2024; 84:102045. [PMID: 38641148 DOI: 10.1016/j.trim.2024.102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Allogeneic stem cell transplantation (SCT) is a critical therapy for haematological malignancy but may lead to acute and chronic graft versus host disease (GvHD). T-cell depletion with alemtuzumab, either in vivo or ex vivo, reduces the incidence of GvHD but is a risk factor for disease relapse and poor immune reconstitution. Natural killer (NK) cells are the first lymphocytes to recover. Classical NK cells make up >90% of the normal circulating population and can directly kill neoplastic or virally infected cells while the regulatory subset makes up <10%, secretes cytokines and is not cytotoxic. The recovery and balance of these subsets post SCT remains controversial, with most studies analysing patients who received unmanipulated grafts and in vivo immunosuppression. OBJECTIVE The aim was to assess the early recovery of NK cells in 18 consecutive patients receiving ex vivo T-cell depleted SCT and to compare the results to 25 individuals receiving haploidentical non-T cell depleted grafts. METHODS All patients received myeloablative conditioning. After stem cell collection, the stem cells of the T cell depleted group were treated "in the bag" with alemtuzumab (CAMPATH 1H) at a concentration of 1mg/108 mononuclear cells and thereafter immediately infused. For those receiving non-T cell depleted grafts, GvHD prophylaxis was with post infusion therapeutic doses of cyclophosphamide. Blood samples were collected at days 21, 28 and 90. Complete blood counts were performed on an automated analyser while lymphocyte and NK subsets were examined using multiparameter flowcytometry. NK cells were defined as lymphocytes which were CD3-/CD56+. The classical subset was recognised as CD56dim/CD16+ while the regulatory population as CD56bright/CD16-. The results for both transplant types were compared at all time points using SPSS v8 statistical software. RESULTS The recovery of lymphocytes was slow in both groups. Those receiving non-T cell depleted grafts had significantly higher T cell counts at day 21 and 28 when compared to the T cell depleted group (P < 0.05). In contrast, NK cells in the ex vivo T-cell depleted patients recovered rapidly and by day 21 was no different to normal (p > 0.05), while the non-T cell depleted group had significantly decreased numbers (p < 0.001), only recovering at day 90. Both groups had abnormal NK cell subset ratios with significantly elevated percentages of regulatory cells (p < 0.05). However, significant differences were observed between the two groups with those receiving T cell depleted grafts having lower percentages of regulatory cells as well as higher numbers of classical NK cells at day 21 and 28 (p < 0.01). CONCLUSION This study of ex vivo T-cell depleted SCT's demonstrates that NK cells recover quicker when compared to those receiving unfractionated grafts. These results may have implications for GvHD and the GvL effect which warrants further study.
Collapse
Affiliation(s)
- Glenda M Davison
- Division of Haematology, Department of Pathology, University of Cape Town, Cape Town, South Africa; SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa.
| | - Jessica J Opie
- Division of Haematology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
| | - Saarah F G Davids
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Rygana Mohammed
- Division of Haematology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Nicolas Novitzky
- Division of Haematology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
3
|
Andreescu M. Risk of Infections Secondary to the Use of Targeted Therapies in Hematological Malignancies. Life (Basel) 2023; 13:1272. [PMID: 37374055 DOI: 10.3390/life13061272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Concurrent infections in hematological malignancies (HM) are major contributors to adverse clinical outcomes, including prolonged hospitalization and reduced life expectancy. Individuals diagnosed with HM are particularly susceptible to infectious pathogens due to immunosuppression, which can either be inherent to the hematological disorder or induced by specific therapeutic strategies. Over the years, the treatment paradigm for HM has witnessed a tremendous shift, from broad-spectrum treatment approaches to more specific targeted therapies. At present, the therapeutic landscape of HM is constantly evolving due to the advent of novel targeted therapies and the enhanced utilization of these agents for treatment purposes. By initiating unique molecular pathways, these agents hinder the proliferation of malignant cells, consequently affecting innate and adaptive immunity, which increases the risk of infectious complications. Due to the complexity of novel targeted therapies and their associated risks of infection, it often becomes a daunting task for physicians to maintain updated knowledge in their clinical practice. The situation is further aggravated by the fact that most of the initial clinical trials on targeted therapies provide inadequate information to determine the associated risk of infection. In such a scenario, a cumulative body of evidence is paramount in guiding clinicians regarding the infectious complications that can arise following targeted therapies. In this review, I summarize the recent knowledge on infectious complications arising in the context of targeted therapies for HM.
Collapse
Affiliation(s)
- Mihaela Andreescu
- Department of Clinical Sciences, Hematology, Faculty of Medicine, Titu Maiorescu University of Bucharest, 040051 Bucharest, Romania
- Department of Hematology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
4
|
Elmariah H, Brunstein CG, Bejanyan N. Immune Reconstitution after Haploidentical Donor and Umbilical Cord Blood Allogeneic Hematopoietic Cell Transplantation. Life (Basel) 2021; 11:102. [PMID: 33572932 PMCID: PMC7911120 DOI: 10.3390/life11020102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is the only potentially curative therapy for a variety of hematologic diseases. However, this therapeutic platform is limited by an initial period when patients are profoundly immunocompromised. There is gradual immune recovery over time, that varies by transplant platform. Here, we review immune reconstitution after allogeneic HCT with a specific focus on two alternative donor platforms that have dramatically improved access to allogeneic HCT for patients who lack an HLA-matched related or unrelated donor: haploidentical and umbilical cord blood HCT. Despite challenges, interventions are available to mitigate the risks during the immunocompromised period including antimicrobial prophylaxis, modified immune suppression strategies, graft manipulation, and emerging adoptive cell therapies. Such interventions can improve the potential for long-term overall survival after allogeneic HCT.
Collapse
Affiliation(s)
- Hany Elmariah
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Claudio G. Brunstein
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Nelli Bejanyan
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL 33612, USA;
| |
Collapse
|