1
|
Colonne CK, Kimble EL, Turtle CJ. Evolving strategies to overcome barriers in CAR-T cell therapy for acute myeloid leukemia. Expert Rev Hematol 2024:1-22. [PMID: 39439295 DOI: 10.1080/17474086.2024.2420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex and heterogeneous disease characterized by an aggressive clinical course and limited efficacious treatment options in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR)-modified T (CAR-T) cell immunotherapy is an investigational treatment strategy for R/R AML that has shown some promise. However, obstacles to successful CAR-T cell immunotherapy for AML remain. AREAS COVERED In analyses of clinical trials of CAR-T cell therapy for R/R AML, complete responses without measurable residual disease have been reported, but the durability of those responses remains unclear. Significant barriers to successful CAR-T cell therapy in AML include the scarcity of suitable tumor-target antigens (TTA), inherent T cell functional deficits, and the immunoinhibitory and hostile tumor microenvironment (TME). This review will focus on these barriers to successful CAR-T cell therapy in AML, and discuss scientific advancements and evolving strategies to overcome them. EXPERT OPINION Achieving durable remissions in R/R AML will likely require a multifaceted approach that integrates advancements in TTA selection, enhancement of the intrinsic quality of CAR-T cells, and development of strategies to overcome inhibitory mechanisms in the AML TME.
Collapse
Affiliation(s)
- Chanukya K Colonne
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erik L Kimble
- Translational Science and Therapeutic Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, USA
| | - Cameron J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
2
|
Karsten H, Matrisch L, Cichutek S, Fiedler W, Alsdorf W, Block A. Broadening the horizon: potential applications of CAR-T cells beyond current indications. Front Immunol 2023; 14:1285406. [PMID: 38090582 PMCID: PMC10711079 DOI: 10.3389/fimmu.2023.1285406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Engineering immune cells to treat hematological malignancies has been a major focus of research since the first resounding successes of CAR-T-cell therapies in B-ALL. Several diseases can now be treated in highly therapy-refractory or relapsed conditions. Currently, a number of CD19- or BCMA-specific CAR-T-cell therapies are approved for acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), multiple myeloma (MM), and follicular lymphoma (FL). The implementation of these therapies has significantly improved patient outcome and survival even in cases with previously very poor prognosis. In this comprehensive review, we present the current state of research, recent innovations, and the applications of CAR-T-cell therapy in a selected group of hematologic malignancies. We focus on B- and T-cell malignancies, including the entities of cutaneous and peripheral T-cell lymphoma (T-ALL, PTCL, CTCL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), classical Hodgkin-Lymphoma (HL), Burkitt-Lymphoma (BL), hairy cell leukemia (HCL), and Waldenström's macroglobulinemia (WM). While these diseases are highly heterogenous, we highlight several similarly used approaches (combination with established therapeutics, target depletion on healthy cells), targets used in multiple diseases (CD30, CD38, TRBC1/2), and unique features that require individualized approaches. Furthermore, we focus on current limitations of CAR-T-cell therapy in individual diseases and entities such as immunocompromising tumor microenvironment (TME), risk of on-target-off-tumor effects, and differences in the occurrence of adverse events. Finally, we present an outlook into novel innovations in CAR-T-cell engineering like the use of artificial intelligence and the future role of CAR-T cells in therapy regimens in everyday clinical practice.
Collapse
Affiliation(s)
- Hendrik Karsten
- Faculty of Medicine, University of Hamburg, Hamburg, Germany
| | - Ludwig Matrisch
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- Faculty of Medicine, University of Lübeck, Lübeck, Germany
| | - Sophia Cichutek
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Winfried Alsdorf
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Andreas Block
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Vanhooren J, Dobbelaere R, Derpoorter C, Deneweth L, Van Camp L, Uyttebroeck A, De Moerloose B, Lammens T. CAR-T in the Treatment of Acute Myeloid Leukemia: Barriers and How to Overcome Them. Hemasphere 2023; 7:e937. [PMID: 37674860 PMCID: PMC10479376 DOI: 10.1097/hs9.0000000000000937] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/26/2023] [Indexed: 09/08/2023] Open
Abstract
Conventional therapies for acute myeloid leukemia (AML) are characterized by high rates of relapse, severe toxicities, and poor overall survival rates. Thus, the development of new therapeutic strategies is crucial for improving the survival and quality of life of AML patients. CD19-directed chimeric antigen receptor (CAR) T-cell immunotherapy has been extremely successful in the treatment of B-cell acute lymphoid leukemia and several mature B-cell lymphomas. However, the use of CAR T-cell therapy for AML is currently prevented due to the lack of a myeloid equivalent to CD19, as currently known cell surface targets on leukemic blasts are also expressed on healthy hematopoietic stem and progenitor cells as well as their progeny. In addition, the immunosuppressive tumor microenvironment has a dampening effect on the antitumor activity of CAR-T cells. Here, we review the therapeutic challenges limiting the use of CAR T-cell therapy for AML and discuss promising novel strategies to overcome them.
Collapse
Affiliation(s)
- Jolien Vanhooren
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium
- Cancer Research Institute Ghent, Belgium
| | - Rani Dobbelaere
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| | - Charlotte Derpoorter
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium
- Cancer Research Institute Ghent, Belgium
| | - Larissa Deneweth
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium
- Cancer Research Institute Ghent, Belgium
| | - Laurens Van Camp
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium
- Cancer Research Institute Ghent, Belgium
| | - Anne Uyttebroeck
- Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Department of Oncology, KU Leuven, Belgium
| | - Barbara De Moerloose
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium
- Cancer Research Institute Ghent, Belgium
| | - Tim Lammens
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium
- Cancer Research Institute Ghent, Belgium
| |
Collapse
|
4
|
Atilla E, Benabdellah K. The Black Hole: CAR T Cell Therapy in AML. Cancers (Basel) 2023; 15:2713. [PMID: 37345050 DOI: 10.3390/cancers15102713] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Despite exhaustive studies, researchers have made little progress in the field of adoptive cellular therapies for relapsed/refractory acute myeloid leukemia (AML), unlike the notable uptake for B cell malignancies. Various single antigen-targeting chimeric antigen receptor (CAR) T cell Phase I trials have been established worldwide and have recruited approximately 100 patients. The high heterogeneity at the genetic and molecular levels within and between AML patients resembles a black hole: a great gravitational field that sucks in everything. One must consider the fact that only around 30% of patients show a response; there are, however, consequential off-tumor effects. It is obvious that a new point of view is needed to achieve more promising results. This review first introduces the unique therapeutic challenges of not only CAR T cells but also other adoptive cellular therapies in AML. Next, recent single-cell sequencing data for AML to assess somatically acquired alterations at the DNA, epigenetic, RNA, and protein levels are discussed to give a perspective on cellular heterogeneity, intercellular hierarchies, and the cellular ecosystem. Finally, promising novel strategies are summarized, including more sophisticated next-generation CAR T, TCR-T, and CAR NK therapies; the approaches with which to tailor the microenvironment and target neoantigens; and allogeneic approaches.
Collapse
Affiliation(s)
- Erden Atilla
- Fred Hutchinson Cancer Research Center, Clinical Research Division, 1100 Fairview Ave N, Seattle, WA 98109, USA
- GENYO Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Health Sciences Technology Park, 18016 Granada, Spain
| | - Karim Benabdellah
- GENYO Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Health Sciences Technology Park, 18016 Granada, Spain
| |
Collapse
|
5
|
Yang J, Chen Y, Jing Y, Green MR, Han L. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol 2023; 20:211-228. [PMID: 36721024 DOI: 10.1038/s41571-023-00729-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Despite the notable success of chimeric antigen receptor (CAR) T cell therapies in the treatment of certain haematological malignancies, challenges remain in optimizing CAR designs and cell products, improving response rates, extending the durability of remissions, reducing toxicity and broadening the utility of this therapeutic modality to other cancer types. Data from multidimensional omics analyses, including genomics, epigenomics, transcriptomics, T cell receptor-repertoire profiling, proteomics, metabolomics and/or microbiomics, provide unique opportunities to dissect the complex and dynamic multifactorial phenotypes, processes and responses of CAR T cells as well as to discover novel tumour targets and pathways of resistance. In this Review, we summarize the multidimensional cellular and molecular profiling technologies that have been used to advance our mechanistic understanding of CAR T cell therapies. In addition, we discuss current applications and potential strategies leveraging multi-omics data to identify optimal target antigens and other molecular features that could be exploited to enhance the antitumour activity and minimize the toxicity of CAR T cell therapy. Indeed, fully utilizing multi-omics data will provide new insights into the biology of CAR T cell therapy, further accelerate the development of products with improved efficacy and safety profiles, and enable clinicians to better predict and monitor patient responses.
Collapse
Affiliation(s)
- Jingwen Yang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yamei Chen
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Ying Jing
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Michael R Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| |
Collapse
|