Voriconazole-induced photocarcinogenesis is promoted by aryl hydrocarbon receptor-dependent COX-2 upregulation.
Sci Rep 2018;
8:5050. [PMID:
29568008 PMCID:
PMC5864729 DOI:
10.1038/s41598-018-23439-7]
[Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/13/2018] [Indexed: 01/12/2023] Open
Abstract
Voriconazole (VRCZ) induces the development of UV-associated skin cancers. The mechanism underlying the VRCZ-induced carcinogenesis has been largely unknown. Here, we showed that VRCZ metabolites plus UVA generated reactive oxygen species and resultant DNA damage of the epidermis, but did not induce substantial apoptosis in human keratinocytes (KCs). Furthermore, VRCZ per se stimulates aryl hydrocarbon receptor (AhR) and upregulates COX-2, which is a pivotal enzyme for the promotion of UV-associated tumors, in an AhR-ARNT dependent manner of the classical (genomic) pathway. Our findings suggest that the phototoxic moieties of VRCZ metabolites may participate in the initiation phase of VRCZ skin cancer, while VRCZ per se promotes the tumor development. Therefore, during VRCZ therapy, sun exposure protection is essential to prevent photocarcinogenesis caused by VRCZ metabolites plus UV. Chemoprevention with selective COX-2 inhibitors may be helpful to repress the development of skin cancers derived from DNA-damaged KCs.
Collapse