1
|
Liu W, Wu J, Jiang Z, Zhang X, Wang Z, Meng F, Liu Z, Zhang T. Application of Ordered Porous Silica Materials in Drug Delivery: A Review. Molecules 2024; 29:5713. [PMID: 39683872 DOI: 10.3390/molecules29235713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Nanotechnology has significantly advanced various fields, including therapeutic delivery, through the use of nanomaterials as drug carriers. The biocompatibility of ordered porous silica materials makes them promising candidates for drug delivery systems, particularly in the treatment of cancer and other diseases. This review summarizes the use of microporous zeolites and mesoporous silica materials in drug delivery, focusing on their physicochemical properties and applications as drug carriers. Special emphasis is placed on strategies for encapsulation and functionalization, highlighting their role in enhancing drug loading and enabling targeted delivery. In conclusion, while ordered porous silica materials hold great potential for drug delivery systems, certain challenges remain.
Collapse
Affiliation(s)
- Wenwen Liu
- Nanjing University of Science and Technology Hospital, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junlin Wu
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Zehao Jiang
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xinyu Zhang
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Zhenxiang Wang
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Fanjun Meng
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Zidi Liu
- Big Data and Intelligence Engineering School, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Teng Zhang
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250307, China
| |
Collapse
|
2
|
Dernaika F, Halawy L, Zeaiter J, Kawrani S, Mroue D, Lteif A, Kourani S, Mehanna M, Abboud C, Mroueh M, Milane A. Development and characterization of a zeolite based drug delivery system: Application to cannabidiol oral delivery. Heliyon 2024; 10:e37373. [PMID: 39296216 PMCID: PMC11409077 DOI: 10.1016/j.heliyon.2024.e37373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
The growing interest in the therapeutic potential of cannabidiol (CBD) has led to the need for effective and reliable delivery methods that overcome its low oral absorption. Zeolites, a class of porous nanoparticles, offer unique advantages as drug carriers due to their high surface area and adjustable pore size. In this study, a zeolite-based drug delivery system was developed for the encapsulation of CBD. The zeolite particles were characterized using various techniques such as Scanning Electron Microscopy (SEM), N2 adsorption analysis, Solid-state Fourier Transform Infrared (FTIR), Direct Light Scattering (DLS), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) before and after the loading. The drug encapsulation efficiency, and the release profile of CBD from the zeolite matrix were evaluated in addition to in vitro dissolution experiments in the intestinal and gastric simulated fluids. The results showed that the loaded zeolite particles exhibited high encapsulation efficiency of 73.5 %. XRD analysis proved that the USY structure remained intact after loading with CBD. DLS and N2 adsorption analysis indicated that CBD was successfully loaded into the zeolite matrix. When compared to CBD containing particles in a commercialized capsule, the in-vitro dissolution rate of CBD loaded zeolite was significantly higher after 30 min in the simulated stomach (pH 1.8) and the intestinal (pH 6.8) fluids, 67.8 % versus 43.6 % and 62.6 % vs 38.4 % respectively. Our findings open new avenues for the use of zeolites as an efficient drug delivery system for drugs with low bioavailability like CBD.
Collapse
Affiliation(s)
- Fouad Dernaika
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Layal Halawy
- Bahaa and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Lebanon
| | - Joseph Zeaiter
- Bahaa and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Lebanon
| | - Sara Kawrani
- Department of Natural Sciences, School of Art and Sciences, Lebanese American University, Byblos, Lebanon
| | - Dima Mroue
- Department of Natural Sciences, School of Art and Sciences, Lebanese American University, Byblos, Lebanon
| | - Anthony Lteif
- Department of Natural Sciences, School of Art and Sciences, Lebanese American University, Byblos, Lebanon
| | - Sima Kourani
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Mohamed Mehanna
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Celine Abboud
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Mohamad Mroueh
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Aline Milane
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
3
|
Pandya T, Patel S, Kulkarni M, Singh YR, Khodakiya A, Bhattacharya S, Prajapati BG. Zeolite-based nanoparticles drug delivery systems in modern pharmaceutical research and environmental remediation. Heliyon 2024; 10:e36417. [PMID: 39262951 PMCID: PMC11388657 DOI: 10.1016/j.heliyon.2024.e36417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
This review explores the potential of zeolite-based nanoparticles in modern pharmaceutical research, focusing on their role in advanced drug delivery systems. Zeolites, integrated into polymeric materials, offer precise drug delivery capabilities due to their unique structural features, biocompatibility, and controllable properties. Additionally, zeolites demonstrate environmental remediation potential through ion exchange processes. Synthetic zeolites, with modified release mechanisms, possess distinctive optical and electronic properties, expanding their applications in various fields. The study details zeolites' significance across industrial and scientific domains, outlining synthesis methods and size control techniques. The review emphasizes successful encapsulation and functionalization strategies for drug delivery, highlighting their role in enhancing drug stability and enabling targeted delivery. Advanced characterization techniques contribute to a comprehensive understanding of zeolite-based drug delivery systems. Addressing potential carcinogenicity, the review discusses environmental impact and risk assessment, stressing the importance of safety considerations in nanoparticle research. In biomedical applications, zeolites play vital roles in antidiarrheal, antitumor, antibacterial, and MRI contrast agents. Clinical trials featuring zeolite-based interventions underscore zeolite's potential in addressing diverse medical challenges. In conclusion, zeolite-based nanoparticles emerge as promising tools for targeted drug delivery, showcasing diverse applications and therapeutic potentials. Despite challenges, their unique advantages position zeolites at the forefront of innovative drug delivery systems.
Collapse
Affiliation(s)
- Tosha Pandya
- L. J. Institute of Pharmacy, L J University, Ahmedabad, Sanand, Sarkhej-Gandhinagar Highway, 382 210, Gujarat, India
| | - Shruti Patel
- Parul Institute of Pharmacy, Parul University, Lambda, Vadodara, 391760, India
| | - Mangesh Kulkarni
- L. J. Institute of Pharmacy, L J University, Ahmedabad, Sanand, Sarkhej-Gandhinagar Highway, 382 210, Gujarat, India
- Gandhinagar Institute of Pharmacy, Gandhinagar University, Khatraj-Kalol Road, Moti Bhoyan, Kalol, Gandhinagar, 382721, Gujarat, India
| | - Yash Raj Singh
- L. J. Institute of Pharmacy, L J University, Ahmedabad, Sanand, Sarkhej-Gandhinagar Highway, 382 210, Gujarat, India
| | - Akruti Khodakiya
- C.U. Shah College of Pharmacy and Research, C.U. Shah University, Surendranagar-Ahmedabad State Highway, 363030, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Bhupendra G Prajapati
- Shree S.K. Patel College of Pharmaceutical Education & Research, Ganpat University, Gujarat, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| |
Collapse
|
4
|
Kukobat R, Škrbić R, Vallejos-Burgos F, Mercadelli E, Gardini D, Silvestroni L, Zanelli C, Esposito L, Stević D, Atlagić SG, Bodroža D, Gagić Ž, Pilipović S, Tubić B, Pajić NB. Enhanced dissolution of anticancer drug letrozole from mesoporous zeolite clinoptilolite. J Colloid Interface Sci 2024; 653:170-178. [PMID: 37713915 DOI: 10.1016/j.jcis.2023.08.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
High dissolution of anticancer drugs directly adsorbed onto porous carriers is indispensable for the development of drug delivery systems with high bioavailability. We report direct adsorption/loading of the anticancer drug letrozole (LTZ) onto the clinoptilolite (CLI) zeolite after the surface activation.In vitroLTZ dissolution from the CLI zeolites reached 95 % after 23 h in an acidic medium, being faster than the dissolution of the pure LTZ molecules. Fast dissolution occurs due to uniform exposure of the LTZ onto the external surface of the CLI zeolites, being accessible to the solvent for dissolution. On the other hand, the LTZ molecules were hidden in the bulk phase, giving a slow dissolution rate. Small positive value of the CLI/LTZ adsorption energy of 0.06 eV suggests that the release process is favourable in aqueous media. The main merit of the CLI/LTZ system is its quick onset of action and high bioavailability. This work demonstrates a possibility of enhancement of the dissolution of poorly soluble LTZ from the CLI zeolite, being promising for the further development of drug delivery systems.
Collapse
Affiliation(s)
- Radovan Kukobat
- University of Banja Luka, Faculty of Medicine, Centre for Biomedical Research, Save Mrkalja 16, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina; University of Banja Luka, Faculty of Technology, Department of Chemical Engineering and Technology, B.V Stepe Stepanovica 73, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina.
| | - Ranko Škrbić
- University of Banja Luka, Faculty of Medicine, Centre for Biomedical Research, Save Mrkalja 16, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina; University of Banja Luka, Faculty of Medicine, Department of Pharmacology, Toxicology and clinical Pharmacology, Save Mrkalja 16, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| | - Fernando Vallejos-Burgos
- Morgan Advanced Materials, Carbon Science Centre of Excellence, 310 Innovation Blvd., Suite 250, State College, PA 16803, USA
| | - Elisa Mercadelli
- CNR-ISSMC (former ISTEC), Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza I-48018, Italy
| | - Davide Gardini
- CNR-ISSMC (former ISTEC), Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza I-48018, Italy
| | - Laura Silvestroni
- CNR-ISSMC (former ISTEC), Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza I-48018, Italy
| | - Chiara Zanelli
- CNR-ISSMC (former ISTEC), Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza I-48018, Italy
| | - Laura Esposito
- CNR-ISSMC (former ISTEC), Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza I-48018, Italy
| | - Dragana Stević
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000 Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| | - Suzana Gotovac Atlagić
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000 Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| | - Darko Bodroža
- University of Banja Luka, Faculty of Technology, Department of Chemical Engineering and Technology, B.V Stepe Stepanovica 73, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina; University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000 Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| | - Žarko Gagić
- University of Banja Luka, Faculty of Medicine, Pharmacy Department, the Republic of Srpska, Bosnia and Herzegovina
| | - Saša Pilipović
- Agency for Medical Products and Medical Devices of Bosnia and Herzegovina, Maršala Tita 9, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Biljana Tubić
- University of Banja Luka, Faculty of Medicine, Pharmacy Department, the Republic of Srpska, Bosnia and Herzegovina
| | - Nataša Bubić Pajić
- University of Banja Luka, Faculty of Medicine, Pharmacy Department, the Republic of Srpska, Bosnia and Herzegovina
| |
Collapse
|
5
|
Wang P, Zhang Y, Zhao J, Yan Y, Liu L, Zhao H, He M. The collective vibrational modes of dihydropyridine in nifedipine studied by terahertz spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122404. [PMID: 36746041 DOI: 10.1016/j.saa.2023.122404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Cardiovascular pharmaceuticals have drawn huge attention in drug development. Nifedipine (NFD) is an important member of calcium channel blockers (CCB) with the structural characteristic of dihydropyridine (DHP), but the binding mechanism to its target remains an open question. Even though several analytical techniques have been used for structural characterizations, the information of collective vibrational behavior is still lacking. In this work, we use terahertz (THz) spectroscopy to investigate the spectral fingerprints of NFD, and quantitatively evaluate the temperature-induced frequency shifts. Combined with quantum chemical calculations, each THz fingerprint is attributed to specific collective vibrational modes. The collective vibrations of DHP are mainly distributed below 2.5 THz, which provides complementary information to understand the behavior of rigid DHP ring. The rotation of methyl group and the wagging of nitrophenyl group are widely distributed in the range of 1.0-4.0 THz, which is helpful for the conformational recognition between NFD and target molecule. THz spectroscopy is demonstrated to be suitable for characterizing the collective vibrational modes of DHP and elucidating the drug-target binding behavior from the perspective of noncovalent interactions. It has the potential to become a non-invasive technology for conformational analysis and pharmaceutical development.
Collapse
Affiliation(s)
- Pengfei Wang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, PR China; Henan Key Laboratory of Laser and Opto-electric Information Technology, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
| | - Yuman Zhang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Juntong Zhao
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yuyue Yan
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| | - Liyuan Liu
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| | - Hongwei Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
| | - Mingxia He
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China; Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
6
|
Souza IMS, García-Villén F, Viseras C, Perger SBC. Zeolites as Ingredients of Medicinal Products. Pharmaceutics 2023; 15:pharmaceutics15051352. [PMID: 37242594 DOI: 10.3390/pharmaceutics15051352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Development of new medicinal products for particular therapeutic treatment or for better manipulations with better quality and less side effects are possible as a result of advanced inorganic and organic materials application, among which zeolites, due to their properties and versatility, have been gaining attention. This paper is an overview of the development in the use of zeolite materials and their composites and modifications as medicinal products for several purposes such as active agents, carriers, for topical treatments, oral formulations, anticancer, the composition of theragnostic systems, vaccines, parenteral dosage forms, tissue engineering, etc. The objective of this review is to explore the main properties of zeolites and associate them with their drug interaction, mainly addressing the advances and studies related to the use of zeolites for different types of treatments due to their zeolite characteristics such as molecule storage capacity, physical and chemical stability, cation exchange capacity, and possibility of functionalization. The use of computational tools to predict the drug-zeolite interaction is also explored. As conclusion was possible to realize the possibilities and versatility of zeolite applications as being able to act in several aspects of medicinal products.
Collapse
Affiliation(s)
- Iane M S Souza
- Laboratório de Peneiras Moleculares, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| | - Fátima García-Villén
- NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-University of Granada, Armilla, 18100 Granada, Spain
| | - Sibele B C Perger
- Laboratório de Peneiras Moleculares, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
7
|
T. M. Kadja G, T. U. Culsum N, Putri RM. Recent advances in the utilization of zeolite-based materials for controlled drug delivery. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
8
|
Hatanaka Y, Uchiyama H, Kadota K, Tozuka Y. Improved solubility and permeability of both nifedipine and ketoconazole based on coamorphous formation with simultaneous dissolution behavior. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Komaty S, Özçelik H, Zaarour M, Ferre A, Valable S, Mintova S. Ruthenium tris(2,2'-bipyridyl) complex encapsulated in nanosized faujasite zeolite as intracellular localization tracer. J Colloid Interface Sci 2021; 581:919-927. [PMID: 32956911 DOI: 10.1016/j.jcis.2020.08.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 11/25/2022]
Abstract
Designing zeolites for medical applications is a challenging task that requires introducing new functionalities without altering the intrinsic properties such as morphology, crystallinity, colloidal stability, surface charge, and porosity. Herein, we present the encapsulation of luminescent ruthenium-tris(2,2'-bipyridyl) complex in faujasite (FAU) zeolite nanocrystals (Ru(bpy)3-FAU) and their use as an intracellular localization tracer. Upon exciting the Ru(bpy)3-FAU zeolite at 450 nm, the sample gives rise to an orange-red emission at 628 nm, thus permitting its use for cellular imaging and localization of the zeolite nanoparticles. The nanosized Ru(bpy)3-FAU zeolite is characterized in terms of size, charge, crystallinity, morphology, porosity, thermal stability, and sorption capacity. The potential toxicity of Ru(bpy)3-FAU on U251-MG glioblastoma cells was evaluated. A safe concentration (50-100 µg/ml) for the Ru(bpy)3-FAU zeolite is identified. The luminescent properties of the ruthenium complex confined in the zeolite nanocrystals allow their localization in the U251-MG cells with a main accumulation in the cytoplasm. The Ru(bpy)3-FAU nanosized zeolite is a potential candidate for biological applications for being stable, safe, capable of loading respiratory gases, and easily probed in the cells owing to its luminescent properties.
Collapse
Affiliation(s)
- Sarah Komaty
- Normandie Univ., UNICAEN, CNRS, ENSICAEN, Laboratoire Catalyse et Spectrochimie (LCS), 14050 Caen, France.
| | - Hayriye Özçelik
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Moussa Zaarour
- Normandie Univ., UNICAEN, CNRS, ENSICAEN, Laboratoire Catalyse et Spectrochimie (LCS), 14050 Caen, France.
| | - Aurélie Ferre
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Samuel Valable
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France..
| | - Svetlana Mintova
- Normandie Univ., UNICAEN, CNRS, ENSICAEN, Laboratoire Catalyse et Spectrochimie (LCS), 14050 Caen, France.
| |
Collapse
|
10
|
Zero-order and prolonged release of atenolol from microporous FAU and BEA zeolites, and mesoporous MCM-41: Experimental and theoretical investigations. J Control Release 2020; 327:140-149. [DOI: 10.1016/j.jconrel.2020.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
|
11
|
Servatan M, Zarrintaj P, Mahmodi G, Kim SJ, Ganjali MR, Saeb MR, Mozafari M. Zeolites in drug delivery: Progress, challenges and opportunities. Drug Discov Today 2020; 25:642-656. [DOI: 10.1016/j.drudis.2020.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/12/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
|
12
|
Seraj S, Lotfollahi MN, Nematollahzadeh A. Synthesis and sorption properties of heparin imprinted zeolite beta/polydopamine composite nanoparticles. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Ahali Abadeh Z, Saviano G, Ballirano P, Santonicola MG. Curcumin-loaded zeolite as anticancer drug carrier: effect of curcumin adsorption on zeolite structure. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-1213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
In this work we used a combination of different techniques to investigate the adsorption properties of curcumin by zeolite type A for potential use as an anticancer drug carrier. Curcumin is a natural water-insoluble drug that has attracted great attention in recent years due to its potential anticancer effect in suppressing many types of cancers, while showing a synergistic antitumor effect with other anticancer agents. However, curcumin is poorly soluble in aqueous solutions leading to the application of high drug dosage in oral formulations. Zeolites, inorganic crystalline aluminosilicates with porous structure on the nano- and micro-scale and high internal surface area, can be useful as pharmaceutical carrier systems to encapsulate drugs with intrinsic low aqueous solubility and improve their dissolution. Here, we explore the use of zeolite type A for encapsulation of curcumin, and we investigate its surface properties and morphology, before and after loading of the anticancer agent, using scanning electron microscopy (SEM), powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and UV-vis spectroscopy. Results are used to assess the loading efficiency of zeolite type A towards curcumin and its structural stability after loading.
Collapse
Affiliation(s)
- Zahra Ahali Abadeh
- Department of Chemical Materials and Environmental Engineering , Sapienza University of Rome , Via del Castro Laurenziano 7 , 00161 Rome , Italy
| | - Giovanna Saviano
- Department of Chemical Materials and Environmental Engineering , Sapienza University of Rome , Via del Castro Laurenziano 7 , 00161 Rome , Italy
| | - Paolo Ballirano
- Department of Earth Sciences , Sapienza University of Rome , P. le Aldo Moro 5 , 00185 Rome , Italy
| | - M. Gabriella Santonicola
- Department of Chemical Materials and Environmental Engineering , Sapienza University of Rome , Via del Castro Laurenziano 7 , 00161 Rome , Italy
| |
Collapse
|
14
|
Kontogiannidou E, Karavasili C, Kouskoura MG, Filippousi M, Van Tendeloo G, Andreadis II, Eleftheriadis GK, Kontopoulou I, Markopoulou CK, Bouropoulos N, Fatouros DG. In vitro and ex vivo assessment of microporous Faujasite zeolite (NaX-FAU) as a carrier for the oral delivery of danazol. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Mehanna MM, Shabarek MI, Elmaradny HA, Elmartadny HA. Spray-dried pH-sensitive microparticles: effectual methodology to ameliorate the bioavailability of acid labile pravastatin. Drug Dev Ind Pharm 2018; 45:485-497. [PMID: 30575415 DOI: 10.1080/03639045.2018.1562465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pravastatin is a promising drug utilized in the treatment of hyperlipidemia, yet, its main clinical limitation is due to gastric liability which fractions its oral bioavailability to less than 18%. The purpose of the current study is to encapsulate pravastatin into Eudragit®-based spray-dried microparticles aspiring to overcome its acid liability. With the aim to optimize the microparticles, formulation and process parameters were studied through acid resistance challenging test. Physicochemical characterization of the optimized spray-dried pH-sensitive microparticles namely; in-vitro dissolution, surface morphology, compatibility, and solid-state studies were performed. Moreover, in-vivo evaluation of the microparticles and accelerated stability studies were carried out. The results outlined that polymer to drug ratio at 5:1 and pravastatin concentration at 1%w/w in spray-drying feed solution showed 38.55% and 53.97% encapsulation efficiency, respectively. The significance of process parameters specifically; the flow rate and the inlet temperature on microparticles surface integrity were observed, and optimized until encapsulating efficiency reached 72.37%. The scanning electron microscopical examination of the optimized microparticles illustrate uniform smooth surface spheres entrapping the drug in an amorphous state as proved through Differential Scanning Calorimetry (DSC) and Fourier Transfer Infrared (FTIR) studies. The in-vivo evaluation demonstrated a 5-fold enhancement in pravastatin bioavailability compared to the marketed product. The results provided evidence for the significance of spray-dried pH-sensitive microparticles as a promising carrier for pravastatin, decreasing its acid liability, and improving its bioavailability.
Collapse
Affiliation(s)
- Mohammed M Mehanna
- a Faculty of Pharmacy, Pharmaceutical Technology Department , Beirut Arab University , Beirut , Lebanon.,b Faculty of Pharmacy, Industrial Pharmacy Department , Alexandria University , Alexandria , Egypt
| | | | | | - Hoda A Elmartadny
- a Faculty of Pharmacy, Pharmaceutical Technology Department , Beirut Arab University , Beirut , Lebanon
| |
Collapse
|
16
|
Karavasili C, Amanatiadou EP, Kontogiannidou E, Eleftheriadis GK, Bouropoulos N, Pavlidou E, Kontopoulou I, Vizirianakis IS, Fatouros DG. Comparison of different zeolite framework types as carriers for the oral delivery of the poorly soluble drug indomethacin. Int J Pharm 2017; 528:76-87. [DOI: 10.1016/j.ijpharm.2017.05.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 01/08/2023]
|
17
|
Adebisi AO, Kaialy W, Hussain T, Al-Hamidi H, Nokhodchi A, Conway BR, Asare-Addo K. Solid-state, triboelectrostatic and dissolution characteristics of spray-dried piroxicam-glucosamine solid dispersions. Colloids Surf B Biointerfaces 2016; 146:841-51. [DOI: 10.1016/j.colsurfb.2016.07.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
|