1
|
Mir M, Akhter MH, Afzal O, Rab SO, Altamimi ASA, Alossaimi MA, Nasar Mir Najib Ullah S, Jaremko M, Emwas AH, Ahmad S, Alam N, Ali MS. Design-of-Experiment-Assisted Fabrication of Biodegradable Polymeric Nanoparticles: In Vitro Characterization, Biological Activity, and In Vivo Assessment. ACS OMEGA 2023; 8:38806-38821. [PMID: 37901564 PMCID: PMC10601053 DOI: 10.1021/acsomega.3c01153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/21/2023] [Indexed: 10/31/2023]
Abstract
Berberine (BER) is an alkaloid obtained from berberis plant having broad biological activities including anticancer. BER-encapsulated alginate (ALG)/chitosan (CHS) nanoparticles (BER-ALG/CHS-NPs) were developed for long-acting improved treatment in breast cancer. The surface of the NPs was activated by a conjugation reaction, and thereafter, the BER-ALG/CHS-NP surface was grafted with folic acid (BER-ALG/CHS-NPs-F) for specific targeting in breast cancer. BER-ALG/CHS-NPs-F was optimized by applying the Box-Behnken design using Expert design software. Moreover, formulations are extensively evaluated in vitro for biopharmaceutical performances and tested for cell viability, cellular uptake, and antioxidant activity. The comparative pharmacokinetic study of formulation and free BER was carried out in animals for estimation of bioavailability. The particle size recorded for the diluted sample using a Malvern Zetasizer was 240 ± 5.6 nm. The ζ-potential and the predicted % entrapment efficiency versus (vs) observed were +18 mV and 83.25 ± 2.3% vs 85 ± 3.5%. The high % drug release from the NPs was recorded. The analytical studies executed using infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction expressed safe combinations of the components in the formulation and physical state of the drug revealed to be amorphous in the formulation. Cytotoxicity testing demonstrated that the formulation effectively lowered the cell viability and IC50 of the tested cell line in comparison to a raw drug. The cellular uptake of BER-ALG/CHS-NPs-F was 5.5-fold higher than that of BER-suspension. The antioxidant capacities of BER-ALG/CHS-NPs-F vs BER-suspension by the DPPH assay were measured to be 62.3 ± 2.5% vs 30 ± 6%, indicating good radical scavenging power of folate-conjugated NPs. The developed formulation showed a 4.4-fold improved oral bioavailability compared to BER-suspension. The hemolytic assay intimated <2% destruction of erythrocytes by the developed formulation. The observed experimental characterization results such as cytotoxicity, cellular uptake, antioxidant activity, and improved absorption suggested the effectiveness of BER-ALG/CHS-NPs-F toward breast cancer.
Collapse
Affiliation(s)
- Mushtaq
Ahmad Mir
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Md Habban Akhter
- School
of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Safia Obaidur Rab
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A. Alossaimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Sarfaraz Ahmad
- Department
of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Nawazish Alam
- Department
of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Md Sajid Ali
- Department
of Pharmaceutics, College of Pharmacy, Jazan
University, Jazan 45142, Saudi Arabia
| |
Collapse
|
2
|
Development of Novel Lipid-Based Formulations for Water-Soluble Vitamin C versus Fat-Soluble Vitamin D3. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120819. [PMID: 36551025 PMCID: PMC9774173 DOI: 10.3390/bioengineering9120819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The aim of this study was to develop a facile and novel lipid-based formulation of vitamin C and vitamin D3. Liposomes loaded with vitamin C and D3 were characterized using transmission electron microscopy (TEM) and zeta potential measurements for evaluating morphology, particle size and physical stability. HPLC was employed to quantify the content of vitamin C and vitamin D3 in their liposomal forms. The UHPLC analysis of the lipid-based vitamin formulation is an easy and rapid method for the characterization as well as the quantification of all components. In addition, encapsulation efficiency, vitamin loading and stability analysis were performed by the UHPLC method, in order to evaluate the reliability of the optimized lipid-based formulation. The TEM results provided key support for the core type of liposome structure in the formulations, whereas the HPLC results indicated that the liposomal vitamin C and D3 systems were homogeneous, and did not undergo phase separation. Taken together, the results demonstrate that liposomal encapsulated vitamins (vitamin C and D3) possess a unilamellar vesicle morphology with uniform particle size, despite differences in the hydrophile-lipophile profiles of the vitamins. The highly efficient encapsulation properties of such liposomal constructs are proposed to contribute to enhanced vitamin bioavailability.
Collapse
|
3
|
Govindarasu M, Abirami P, Alharthi SS, Thiruvengadam M, Rajakumar G, Vaiyapuri M. Synthesis, physicochemical characterization, and in vitro evaluation of biodegradable PLGA nanoparticles entrapped to folic acid for targeted delivery of kaempferitrin. Biotechnol Appl Biochem 2022; 69:2387-2398. [PMID: 35020231 DOI: 10.1002/bab.2290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
Polymeric nanoparticles are widely studied in the treatment of colorectal cancer. Kaempferitrin-loaded nontoxic and biodegradable poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) developed by the solvent emulsion evaporation method by improving its solubility and bioavailability. In order to improve the delivery of kaempferitrin (KM) to cancerous cells, folic acid (FA) combined kaempfertrin PLGA NPs were prepared. The goal of the study was whether PLGA NPs with surface KM and FA could help to prevent colorectal cancer. The synthesis of KM with FA in a nanomedicine could be crucial in the development of colon cancer chemotherapeutics. The physicochemical characteristics of synthesized KM-entrapped PLGA NPs were investigated by XRD, FTIR, zeta potential, and TEM. The KM + FA + PLGA NPs showed particle size with 132.9 ± 1.4 nm, zeta potential -15.0 ± 1.73 mV, encapsulation efficiency 67.92 ± 4.8, and drug-loading capacity 0.463 ± 0.173. In vitro cytotoxicity study on HT-29 cell lines using the MTT assay, the apoptotic study revealed that KM + FA + PLGA NPs have an enhanced cytotoxic effect compared to the KM + PLGA NPs drug solution. These findings suggested that KM + FA + PLGA NPs could be an effective chemotherapeutic drug delivery system in colon adenocarcinoma HT-29 cells.
Collapse
Affiliation(s)
- Mydhili Govindarasu
- Molecular Oncology Lab, Department of Biochemistry, Periyar University, Salem, 636011, India
| | - Pari Abirami
- Department of Botany, Seethalakshmi Achi College for Women, Pallathur, Sivagangai, 630107, India
| | - Salman S Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 110999, Taif, 21944, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Govindasamy Rajakumar
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Manju Vaiyapuri
- Molecular Oncology Lab, Department of Biochemistry, Periyar University, Salem, 636011, India
| |
Collapse
|
4
|
Wang C, Li F, Zhang T, Yu M, Sun Y. Recent advances in anti-multidrug resistance for nano-drug delivery system. Drug Deliv 2022; 29:1684-1697. [PMID: 35616278 PMCID: PMC9154776 DOI: 10.1080/10717544.2022.2079771] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy for tumors occasionally results in drug resistance, which is the major reason for the treatment failure. Higher drug doses could improve the therapeutic effect, but higher toxicity limits the further treatment. For overcoming drug resistance, functional nano-drug delivery system (NDDS) has been explored to sensitize the anticancer drugs and decrease its side effects, which are applied in combating multidrug resistance (MDR) via a variety of mechanisms including bypassing drug efflux, controlling drug release, and disturbing metabolism. This review starts with a brief report on the major MDR causes. Furthermore, we searched the papers from NDDS and introduced the recent advances in sensitizing the chemotherapeutic drugs against MDR tumors. Finally, we concluded that the NDDS was based on several mechanisms, and we looked forward to the future in this field.
Collapse
Affiliation(s)
- Changduo Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Fashun Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Tianao Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Min Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
J591 functionalized paclitaxel-loaded PLGA nanoparticles successfully inhibited PSMA overexpressing LNCaP cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Preparation and characterization of a novel magnetized nanosphere as a carrier system for drug delivery using Forssk. hydrogel combined with mefenamic acid as the drug model. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Synthesis and cytotoxicity evaluation of doxorubicin-polyethyleneimine conjugate as a potential carrier for dual delivery of drug and gene. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Sharma S, Sudhakara P, Singh J, Ilyas RA, Asyraf MRM, Razman MR. Critical Review of Biodegradable and Bioactive Polymer Composites for Bone Tissue Engineering and Drug Delivery Applications. Polymers (Basel) 2021; 13:2623. [PMID: 34451161 PMCID: PMC8399915 DOI: 10.3390/polym13162623] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
In the determination of the bioavailability of drugs administered orally, the drugs' solubility and permeability play a crucial role. For absorption of drug molecules and production of a pharmacological response, solubility is an important parameter that defines the concentration of the drug in systemic circulation. It is a challenging task to improve the oral bioavailability of drugs that have poor water solubility. Most drug molecules are either poorly soluble or insoluble in aqueous environments. Polymer nanocomposites are combinations of two or more different materials that possess unique characteristics and are fused together with sufficient energy in such a manner that the resultant material will have the best properties of both materials. These polymeric materials (biodegradable and other naturally bioactive polymers) are comprised of nanosized particles in a composition of other materials. A systematic search was carried out on Web of Science and SCOPUS using different keywords, and 485 records were found. After the screening and eligibility process, 88 journal articles were found to be eligible, and hence selected to be reviewed and analyzed. Biocompatible and biodegradable materials have emerged in the manufacture of therapeutic and pharmacologic devices, such as impermanent implantation and 3D scaffolds for tissue regeneration and biomedical applications. Substantial effort has been made in the usage of bio-based polymers for potential pharmacologic and biomedical purposes, including targeted deliveries and drug carriers for regulated drug release. These implementations necessitate unique physicochemical and pharmacokinetic, microbiological, metabolic, and degradation characteristics of the materials in order to provide prolific therapeutic treatments. As a result, a broadly diverse spectrum of natural or artificially synthesized polymers capable of enzymatic hydrolysis, hydrolyzing, or enzyme decomposition are being explored for biomedical purposes. This summary examines the contemporary status of biodegradable naturally and synthetically derived polymers for biomedical fields, such as tissue engineering, regenerative medicine, bioengineering, targeted drug discovery and delivery, implantation, and wound repair and healing. This review presents an insight into a number of the commonly used tissue engineering applications, including drug delivery carrier systems, demonstrated in the recent findings. Due to the inherent remarkable properties of biodegradable and bioactive polymers, such as their antimicrobial, antitumor, anti-inflammatory, and anticancer activities, certain materials have gained significant interest in recent years. These systems are also actively being researched to improve therapeutic activity and mitigate adverse consequences. In this article, we also present the main drug delivery systems reported in the literature and the main methods available to impregnate the polymeric scaffolds with drugs, their properties, and their respective benefits for tissue engineering.
Collapse
Affiliation(s)
- Shubham Sharma
- Regional Centre for Extension and Development, CSIR-Central Leather Research Institute, Leather Complex, Kapurthala Road, Jalandhar 144021, India
- PhD Research Scholar, IK Gujral Punjab Technical University, Jalandhar-Kapurthala, Highway, VPO, Ibban 144603, India
| | - P. Sudhakara
- Regional Centre for Extension and Development, CSIR-Central Leather Research Institute, Leather Complex, Kapurthala Road, Jalandhar 144021, India
| | - Jujhar Singh
- IK Gujral Punjab Technical University, Jalandhar-Kapurthala, Highway, VPO, Ibban 144603, India;
| | - R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - M. R. M. Asyraf
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - M. R. Razman
- Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| |
Collapse
|
9
|
Lee JS, Oh H, Sung D, Lee JH, Choi WI. High Solubilization and Controlled Release of Paclitaxel Using Thermosponge Nanoparticles for Effective Cancer Therapy. Pharmaceutics 2021; 13:1150. [PMID: 34452111 PMCID: PMC8398058 DOI: 10.3390/pharmaceutics13081150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer, which is a leading cause of death, contributes significantly to reducing life expectancy worldwide. Even though paclitaxel (PTX) is known as one of the main anticancer drugs, it has several limitations, including low solubility in aqueous solutions, a limited dosage range, an insufficient release amount, and patient resistance. To overcome these limitations, we suggest the development of PTX-loaded thermosponge nanoparticles (PTX@TNP), which result in improved anticancer effects, via a simple nanoprecipitation method, which allows the preparation of PTX@TNPs with hydrophobic interactions without any chemical conjugation. Further, to improve the drug content and yield of the prepared complex, the co-organic solvent ratio was optimized. Thus, it was observed that the drug release rate increased as the drug capacity of PTX@TNPs increased. Furthermore, increasing PTX loading led to considerable anticancer activity against multidrug resistance (MDR)-related colorectal cancer cells (HCT 15), implying a synergistic anticancer effect. These results suggest that the solubilization of high drug amounts and the controlled release of poorly water-soluble PTX using TNPs could significantly improve its anticancer therapy, particularly in the treatment of MDR-p-glycoprotein-overexpressing cancers.
Collapse
Affiliation(s)
- Jin Sil Lee
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (J.S.L.); (H.O.); (D.S.); (J.H.L.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Cheomdan-gwagiro 123, Buk-gu, Gwangju 61005, Korea
| | - Hyeryeon Oh
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (J.S.L.); (H.O.); (D.S.); (J.H.L.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Cheomdan-gwagiro 123, Buk-gu, Gwangju 61005, Korea
| | - Daekyung Sung
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (J.S.L.); (H.O.); (D.S.); (J.H.L.)
| | - Jin Hyung Lee
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (J.S.L.); (H.O.); (D.S.); (J.H.L.)
| | - Won Il Choi
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (J.S.L.); (H.O.); (D.S.); (J.H.L.)
| |
Collapse
|
10
|
Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy typically involves the use of specific chemodrugs to inhibit the proliferation of cancer cells, but the frequent emergence of a variety of multidrug-resistant cancer cells poses a tremendous threat to our combat against cancer. The fundamental causes of multidrug resistance (MDR) have been studied for decades, and can be generally classified into two types: one is associated with the activation of diverse drug efflux pumps, which are responsible for translocating intracellular drug molecules out of the cells; the other is linked with some non-efflux pump-related mechanisms, such as antiapoptotic defense, enhanced DNA repair ability, and powerful antioxidant systems. To overcome MDR, intense efforts have been made to develop synergistic therapeutic strategies by introducing MDR inhibitors or combining chemotherapy with other therapeutic modalities, such as phototherapy, gene therapy, and gas therapy, in the hope that the drug-resistant cells can be sensitized toward chemotherapeutics. In particular, nanotechnology-based drug delivery platforms have shown the potential to integrate multiple therapeutic agents into one system. In this review, the focus was on the recent development of nanostrategies aiming to enhance the efficiency of chemotherapy and overcome the MDR of cancer in a synergistic manner. Different combinatorial strategies are introduced in detail and the advantages as well as underlying mechanisms of why these strategies can counteract MDR are discussed. This review is expected to shed new light on the design of advanced nanomedicines from the angle of materials and to deepen our understanding of MDR for the development of more effective anticancer strategies. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Zhao J, Li D, Ma J, Yang H, Chen W, Cao Y, Liu P. Increasing the accumulation of aptamer AS1411 and verapamil conjugated silver nanoparticles in tumor cells to enhance the radiosensitivity of glioma. NANOTECHNOLOGY 2021; 32:145102. [PMID: 33296880 DOI: 10.1088/1361-6528/abd20a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Radioresistance significantly decreases the efficacy of radiotherapy, which can ultimately lead to tumor recurrence and metastasis. As a novel type of nano-radiosensitizer, silver nanoparticles (AgNPs) have shown promising radiosensitizing properties in the radiotherapy of glioma, but their ability to efficiently enter and accumulate in tumor cells needs to be improved. In the current study, AS1411 and verapamil (VRP) conjugated bovine serum albumin (BSA) coated AgNPs (AgNPs@BSA-AS-VRP) were synthesized and characterized. Dark-field imaging and inductively coupled plasma mass spectrometry were applied to investigate the accumulation of AgNPs@BSA-AS and AgNPs@BSA-AS-VRP mixed in different ratios in U251 glioma cells. To assess the influences of 19:1 mixed AgNPs@BSA-AS and AgNPs@BSA-AS-VRP on the P-glycoprotein (P-gp) efflux activity, rhodamine 123 accumulation assay was carried out. Colony formation assay and tumor-bearing nude mice model were employed to examine the radiosensitizing potential of 19:1 mixed AgNPs@BSA-AS and AgNPs@BSA-AS-VRP. Thioredoxin Reductase (TrxR) Assay Kit was used to detect the TrxR activity in cells treated with different functionally modified AgNPs. Characterization results revealed that AgNPs@BSA-AS-VRP were successfully constructed. When AgNPs@BSA-AS and AgNPs@BSA-AS-VRP were mixed in a ratio of 19:1, the amount of intracellular nanoparticles increased greatly through AS1411-mediated active targeting and inhibition of P-gp activity. In vitro and in vivo experiments clearly showed that the radiosensitization efficacy of 19:1 mixed AgNPs@BSA-AS and AgNPs@BSA-AS-VRP was much stronger than that of AgNPs@BSA and AgNPs@BSA-AS. It was also found that 19:1 mixed AgNPs@BSA-AS and AgNPs@BSA-AS-VRP significantly inhibited intracellular TrxR activity. These results indicate that 19:1 mixed AgNPs@BSA-AS and AgNPs@BSA-AS-VRP can effectively accumulate in tumor cells and have great potential as high-efficiency nano-radiosensitizers in the radiotherapy of glioma.
Collapse
Affiliation(s)
- Jing Zhao
- School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
| | - Dongdong Li
- School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
| | - Jun Ma
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Huiquan Yang
- School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
| | - Wenbin Chen
- School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
| | - Yuyu Cao
- School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
12
|
T-13 and T-26, the novel taxanes with improved oral bioavailability in rats. Sci Rep 2020; 10:3211. [PMID: 32081942 PMCID: PMC7035259 DOI: 10.1038/s41598-020-60184-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/07/2020] [Indexed: 01/25/2023] Open
Abstract
In an attempt to improve the oral bioavailability of taxanes, a series of new analogues were synthesized and tested in a panel of human tumor cell lines and cellular permeability assays. Compounds T-13 and T-26 showed potent cytotoxicity and exhibited the highest permeability, so they were selected for pharmacokinetic studies. Here, pharmacokinetics of T-13 and T-26 were studied after intravenous injection (5 mg/kg) and oral administration (60 mg/kg) in male Sprague-Dawley (S.D.) rats, respectively. Plasma concentrations were characterized using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The oral bioavailability of T-13 and T-26 was determined to be 10.71% and 65.79%, respectively. Compounds T-13 and T-26 were both poor substrates of P-glycoprotein (P-gp), and they had a much higher bioavailability than paclitaxel, especially T-26. T-26 with good oral bioavailability represented a potential candidate for potent antitumor activity given oral administration.
Collapse
|
13
|
Methotrexate and Curcumin co-encapsulated PLGA nanoparticles as a potential breast cancer therapeutic system: In vitro and in vivo evaluation. Colloids Surf B Biointerfaces 2019; 184:110515. [DOI: 10.1016/j.colsurfb.2019.110515] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 01/10/2023]
|
14
|
Mohtashami Z, Esmaili Z, Vakilinezhad MA, Seyedjafari E, Akbari Javar H. Pharmaceutical implants: classification, limitations and therapeutic applications. Pharm Dev Technol 2019; 25:116-132. [DOI: 10.1080/10837450.2019.1682607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zahra Mohtashami
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaili
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Hamid Akbari Javar
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Ahmadi F, Bahmyari M, Akbarizadeh A, Alipour S. Doxorubicin-verapamil dual loaded PLGA nanoparticles for overcoming P-glycoprotein mediated resistance in cancer: Effect of verapamil concentration. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Verapamil delivery systems on the basis of mesoporous ZSM-5/KIT-6 and ZSM-5/SBA-15 polymer nanocomposites as a potential tool to overcome MDR in cancer cells. Eur J Pharm Biopharm 2019; 142:460-472. [PMID: 31336182 DOI: 10.1016/j.ejpb.2019.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 12/23/2022]
Abstract
ZSM-5/KIT-6 and ZSM-5/SBA-15 nanoparticles were synthesized and further modified by a post-synthesis method with (CH2)3SO3H and (CH2)3NHCO(CH2)2COOH groups to optimize their drug loading and release kinetic profiles. The verapamil cargo drug was loaded by incipient wetness impregnation both on the parent and modified nanoporous supports. Nanocarriers were then coated with a three-layer polymeric shell composed of chitosan-k-carrageenan-chitosan with grafted polysulfobetaine chains. The parent and drug loaded formulations were characterized by powder XRD, N2 physisorption, thermal analysis, AFM, DLS, TEM, ATR-FT-IR and solid state NMR spectroscopies. Loading of verapamil on such nanoporous carriers and their subsequent polymer coating resulted in a prolonged in vitro release of the drug molecules. Quantum-chemical calculations were performed to investigate the strength of the interaction between the specific functional groups of the drug molecule and (CH2)3SO3H and CH2)3NHCO(CH2)2COOH groups of the drug carrier. Furthermore, the ability of the developed nanocomposites to positively modulate the intracellular internalization and thereby augment the antitumor activity of the p-gp substrate drug doxorubicin was investigated in a comparative manner vs. free drug in a panel of MDR positive (HL-60/Dox, HT-29) and MDR negative (HL-60) human cancer cell lines using the Chou-Talalay method.
Collapse
|
17
|
Bhattacharya S, Khanam J, Sarkar P, Pal TK. A chemotherapeutic approach targeting the acidic tumor microenvironment: combination of a proton pump inhibitor and paclitaxel for statistically optimized nanotherapeutics. RSC Adv 2019; 9:240-254. [PMID: 35521568 PMCID: PMC9059297 DOI: 10.1039/c8ra08924h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Development of statistically optimized, paclitaxel–lansoprazole, dual drug loaded PLGA nanoparticles as a promising tumor acidic microenvironment targeted chemotherapeutic approach.
Collapse
Affiliation(s)
- Saswati Bhattacharya
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
- India
- Bioequivalence Study Centre
| | - Jasmina Khanam
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
- India
| | - Pradipta Sarkar
- Bioequivalence Study Centre
- Jadavpur University
- Kolkata-700032
- India
| | - Tapan Kumar Pal
- Bioequivalence Study Centre
- Jadavpur University
- Kolkata-700032
- India
| |
Collapse
|
18
|
Evaluation of the Absorption Behavior of Main Component Compounds of Salt-Fried Herb Ingredients in Qing'e Pills by Using Caco-2 Cell Model. Molecules 2018; 23:molecules23123321. [PMID: 30558187 PMCID: PMC6321031 DOI: 10.3390/molecules23123321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022] Open
Abstract
Qing’e Pills is a Chinese traditional herbal product, which is often used to strengthen muscles and bones in TCM (traditional Chinese Medicine) practice. Its two main component herbs, namely, Cortex Eucommiae and Fructus Psoraleae are both required to be salt-fried according to TCM theory. We have evaluated the effects of salt-frying treated herbs on Caco-2 cell uptake behavior for those active ingredients of Qing’e Pills. By investigating of various variables, including MTT, temperature, inhibitors, pH, salt concentration and herb processing methods, we tried to clarify whether the salt-processing on herbs was necessary or not. Results showed that, compared to other processing methods, the salt-frying process significantly (p < 0.01) enhanced the absorption of effective components of Qing’e Pills. The way that psoralen, isopsoralen, psoralenoside and geniposide acid entered Caco-2 cells at low concentrations was via passive diffusion. These components were not substrates of P-glycoprotein. It demonstrated that the salt-frying process not only enhanced the concentration of active components in herb extract, but also changed their absorption behaviors. Nevertheless, the mechanism of absorption behavior changing needs to be further investigated.
Collapse
|
19
|
Rezvantalab S, Drude NI, Moraveji MK, Güvener N, Koons EK, Shi Y, Lammers T, Kiessling F. PLGA-Based Nanoparticles in Cancer Treatment. Front Pharmacol 2018; 9:1260. [PMID: 30450050 PMCID: PMC6224484 DOI: 10.3389/fphar.2018.01260] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
Nanomedicines can be used for a variety of cancer therapies including tumor-targeted drug delivery, hyperthermia, and photodynamic therapy. Poly (lactic-co-glycolic acid) (PLGA)-based materials are frequently used in such setups. This review article gives an overview of the properties of previously reported PLGA nanoparticles (NPs), their behavior in biological systems, and their use for cancer therapy. Strategies are emphasized to target PLGA NPs to the tumor site passively and actively. Furthermore, combination therapies are introduced that enhance the accumulation of NPs and, thereby, their therapeutic efficacy. In this context, the huge number of reports on PLGA NPs used as drug delivery systems in cancer treatment highlight the potential of PLGA NPs as drug carriers for cancer therapeutics and encourage further translational research.
Collapse
Affiliation(s)
- Sima Rezvantalab
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.,Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Natascha Ingrid Drude
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.,Department of Nuclear Medicine, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Nihan Güvener
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Emily Kate Koons
- Department of Pharmacology and Toxicology, College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Yang Shi
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
20
|
Parhizkar E, Rashedinia M, Karimi M, Alipour S. Design and development of vitamin C-encapsulated proliposome with improved in-vitro and ex-vivo antioxidant efficacy. J Microencapsul 2018; 35:301-311. [PMID: 29781344 DOI: 10.1080/02652048.2018.1477845] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vitamin C, as an antioxidant additive in pharmaceutical and food products, is susceptible to environmental conditions, and new design strategies are needed to enhance its stability. The aim of this study is to prepare vitamin C proliposome using film deposition on the carrier by applying different factors, and optimise the characteristics of the obtained powder using the design expert® software. The optimised formulation demonstrated acceptable flowability with 20% vitamin C loading. This formulation released about 90% vitamin C within 2 h and showed higher (1.7-fold) in-vitro antioxidant activity. Ex-vivo antioxidant activity was 1.9 and 1.6 times higher in brain and liver cells, respectively. A 27% reduction in malondialdehyde (MDA) level of liver cell was obtained comparing free vitamin C. Therefore, this study results suggest that the vitamin C-encapsulated proliposome powder might be an appropriate carrier for oral drug delivery of vitamin C with better antioxidant efficacy.
Collapse
Affiliation(s)
- Elahehnaz Parhizkar
- a Department of Pharmaceutics, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Marzieh Rashedinia
- b Department of Toxicology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Maryam Karimi
- c Department of Quality Control, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Shohreh Alipour
- c Department of Quality Control, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran.,d Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
21
|
Vakilinezhad MA, Alipour S, Montaseri H. Fabrication and in vitro evaluation of magnetic PLGA nanoparticles as a potential Methotrexate delivery system for breast cancer. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Alemzadeh E, Dehshahri A, Izadpanah K, Ahmadi F. Plant virus nanoparticles: Novel and robust nanocarriers for drug delivery and imaging. Colloids Surf B Biointerfaces 2018; 167:20-27. [PMID: 29625419 DOI: 10.1016/j.colsurfb.2018.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/09/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Nanoparticles have been gained much attention for biomedical applications. A promising type of nanocarriers is viral nanoparticles (VNPs) which are natural bio-nanomaterials derived from different type of viruses. Amongst VNPs, plant VNPs present several pros over general nanoparticles such as liposomes, dendrimers or quantum dots. Some of these advantages include: degradability, safety for human, known structures to atomic level, possibility of attaching ligand with vigorous control on structure, availability for genetic and chemical manipulations and very flexible methods to prepare them. Variety of plant viruses have been modified by chemical and genetic modification of their inner cavities and their outer-surfaces. These modifications provide suitable sites for attachment of markers and drug molecules for vascular imaging and tumor targeting. In this review a brief description of plant virus nanoparticles and their biomedical applications especially in drug delivery is provided. The methods of loading cargos in these VNPs and their final biofate are also reviewed.
Collapse
Affiliation(s)
- Effat Alemzadeh
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Dehshahri
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keramatolah Izadpanah
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Fatemeh Ahmadi
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|