1
|
Mineto AR, de Matos SP, Bordignon IM, Ribeiro R, Apel MA, da Veiga-Junior VF, Koester LS. Development by design of experiment and validation of a HPLC-UV method for simultaneous quantification of 1-nitro-2-phenylethane and methyleugenol: Application to nail permeation/retention studies. J Pharm Biomed Anal 2024; 239:115889. [PMID: 38056286 DOI: 10.1016/j.jpba.2023.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Aniba canelilla (Kunth) Mez is an aromatic tree from Amazon region whose essential oil presents 1-nitro-2-phenylethane (NP) and methyleugenol (ME) as major compounds. Several properties are attributed to Aniba canelilla essential oil (ACEO), such as antifungal. Onychomycoses are fungal nail infections that require novel therapeutic alternatives, especially topical ones. However, to ensure the success of topical therapy, the active compound should be able to penetrate/permeate the nail plate, which is challenging due to the highly keratinized composition of this structure. Thus, the aims of this article were to develop, validate and apply a high-performance liquid chromatography method (HPLC-UV) to quantify NP and ME in porcine hoof extract (PHE) and receptor fluid (RF) during in vitro permeation/retention studies in nail model, for which porcine hoof membranes were used. For method development, two Designs of Experiment (DoE) were adopted: 23 Full Factorial and Box-Behnken. Retention times of 5.65 and 7.49 min were achieved for NP and ME, respectively. The method was full validated for NP and ME quantification in receptor fluid, in accordance with the recommended parameters by ICH Q2(R1) Guideline. In addition, the method was full validated for NP and ME quantification in porcine hoof extract, considering the parameters and criteria of ICH M10 Guideline. In vitro permeation/retention studies were carried out in nail model, and promising results were obtained. NP reached the receptor fluid in the order of 441.1 ± 92.1 µg/cm2 at 72 h. The amount of NP and ME retained into porcine hoof membrane was 1272.6 ± 225.7 µg/cm2 and 84.7 ± 20.4 µg/cm2, respectively, at 72 h. Our findings open perspective to develop topical formulations containing ACEO as active compound aiming the management of onychomycosis.
Collapse
Affiliation(s)
- Alexandre Rolim Mineto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, Santana 2752, Zip code 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Sheila Porto de Matos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, Santana 2752, Zip code 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Isabella Morel Bordignon
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, Santana 2752, Zip code 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rayssa Ribeiro
- Programa de Pós-Graduacão em Química, Instituto Militar de Engenharia, Praça General Tibúrcio Urca 80, Zip code 22290-270, Rio de Janeiro, Brazil
| | - Miriam Anders Apel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, Santana 2752, Zip code 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Valdir Florêncio da Veiga-Junior
- Programa de Pós-Graduacão em Química, Instituto Militar de Engenharia, Praça General Tibúrcio Urca 80, Zip code 22290-270, Rio de Janeiro, Brazil
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, Santana 2752, Zip code 90610-000, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Kumar Behera J, Kumar S, Sharma R, Jain A, Kumar Garg N, Khopade A, Sawant KK, Singh R, Nirbhavane P. Novel Discoveries and Clinical Advancements for Treating Onychomycosis: A Mechanistic Insight. Adv Drug Deliv Rev 2024; 205:115174. [PMID: 38161056 DOI: 10.1016/j.addr.2023.115174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Onychomycosis continues to be the most challenging disease condition for pharmaceutical scientists to develop an effective drug delivery system. Treatment challenges lie in incomplete cure and high relapse rate. Present compilation provides cumulative information on pathophysiology, diagnostic techniques, and conventional treatment strategies to manage onychomycosis. Novel technologies developed for successful delivery of antifungal molecules are also discussed in brief. Multidirectional information offered by this article also unlocks the panoramic view of leading patented technologies and clinical trials. The obtained clinical landscape recommends the use of advanced technology driven approaches, as a promising way-out for treatment of onychomycosis. Collectively, present review warrants the application of novel technologies for the successful management of onychomycosis. This review will assist readers to envision a better understanding about the technologies available for combating onychomycosis. We also trust that these contributions address and certainly will encourage the design and development of nanocarriers-based delivery vehicles for effective management of onychomycosis.
Collapse
Affiliation(s)
- Jitesh Kumar Behera
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, 247341, Uttar Pradesh, India
| | - Samarth Kumar
- Formulation Research & Development-Non-Orals Sun Pharmaceutical Industries Ltd, Vadodara, 390020, Gujarat, India; Department of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Rajeev Sharma
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, M.P., India
| | - Ashay Jain
- Formulation Research & Development-Non-Orals Sun Pharmaceutical Industries Ltd, Vadodara, 390020, Gujarat, India.
| | - Neeraj Kumar Garg
- Formulation Research & Development-Non-Orals Sun Pharmaceutical Industries Ltd, Vadodara, 390020, Gujarat, India
| | - Ajay Khopade
- Formulation Research & Development-Non-Orals Sun Pharmaceutical Industries Ltd, Vadodara, 390020, Gujarat, India
| | - Krutika K Sawant
- Department of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Ranjit Singh
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, 247341, Uttar Pradesh, India
| | - Pradip Nirbhavane
- Amity Institute of Pharmacy, Amity University of Haryana, Gurgaon, 122413, India.
| |
Collapse
|
3
|
Kumar L, Rana R, Kukreti G, Aggarwal V, Chaurasia H, Sharma P, Jyothiraditya V. Overview of Spanlastics: A Groundbreaking Elastic Medication Delivery Device with Versatile Prospects for Administration via Various Routes. Curr Pharm Des 2024; 30:2206-2221. [PMID: 38967069 DOI: 10.2174/0113816128313398240613063019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/06/2024]
Abstract
When compared to the challenges associated with traditional dosage forms, medication delivery systems based on nanotechnology have been a huge boon. One such candidate for medication delivery is spanlastics, an elastic nanovesicle that can transport a diverse array of medicinal compounds. The use of spanlastics has been associated with an increase in interest in alternative administration methods. The non-ionic surfactant or surfactant blend is the main component of spanlastics. The purpose of this review was primarily to examine the potential of spanlastics as a delivery system for a variety of medication classes administered via diverse routes. Science Direct, Google Scholar, and Pubmed were utilized to search the academic literature for this review. Several studies have demonstrated that spanlastics greatly improve therapeutic effectiveness, increase medication absorption, and decrease drug toxicity. This paper provides a summary of the composition and structure of spanlastics along with their utility in the delivery of various therapeutic agents by adopting different routes. Additionally, it provides an overview of the numerous disorders that may be treated using drugs that are contained in spanlastic vesicles.
Collapse
Affiliation(s)
- Lalit Kumar
- Department of Pharmaceutics, GNA School of Pharmacy, GNA University, Phagwara, Punjab 144401, India
| | - Ritesh Rana
- Department of Pharmaceutical Sciences (Pharmaceutics), Laureate Institute of Pharmacy, Kathog-Kangra, Himachal Pradesh 176031, India
| | - Gauree Kukreti
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala Dehradun, Uttarakhand 248161, India
| | - Vikas Aggarwal
- Senior Pharmacovigilance Specialist, Continuum India LLP, 3rd Floor, Tower F DLF Building, Chandigarh Technology Park, Chandigarh 160101, India
| | - Himanshu Chaurasia
- Department of Pharmacy, Quantum School of Health Science, Quantum University, Vill. Mandawar (N.H.73), Roorkee-Dehradun Highway, Roorkee, Uttrakhand 247662, India
| | - Puneet Sharma
- Department of Pharmaceutical Sciences (Pharmaceutics), Himachal Institute of Pharmaceutical Education and Research (HIPER), Bela-Nadaun, District-Hamirpur, H.P. 177033, India
| | - Vuluchala Jyothiraditya
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| |
Collapse
|
4
|
El Hosary R, Teaima MH, El-Nabarawi M, Yousry Y, Eltahan M, Bakr A, Aboelela H, Abdelmonem R, Nassif RM. Topical delivery of extracted curcumin as curcumin loaded spanlastics anti-aging gel: Optimization using experimental design and ex-vivo evaluation. Saudi Pharm J 2024; 32:101912. [PMID: 38178851 PMCID: PMC10765109 DOI: 10.1016/j.jsps.2023.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Objective This study aimed to extract and separate the organic coloring agent known as Curcumin from the rhizomes of Curcuma longa, and then to create Spanlastics that were loaded with curcumin using the ethanol injection technique. The optimized Spanlastic dispersions were then incorporated into a gel preparation for topical anti-aging use. The Spanlastic dispersions were analyzed for particle size, zeta potential, drug loading efficiency, and in vitro release profile. Furthermore, the rheological properties of the gel preparation were assessed, and a skin penetration study was conducted using confocal microscopy. Methods Twelve different Curcumin-loaded Spanlastic dispersions using the ethanol injection method with Span® 60 as a surfactant and Tween® 80 as an edge activator in varying ratios. The dispersions were then subjected to various tests, such as particle size analysis, zeta potential measurement, drug entrapment efficiency assessment, and in vitro release profiling. The optimized formula was selected using Design-Expert® software version 13, then used to create a gel preparation, which utilized 2% HPMC E50 as a gelling polymer. The gel was evaluated for its rheological properties and analyzed using confocal microscopy. Additionally, Raman analysis was performed to ensure that the polymers used in the gel were compatible with the drug substance. Results F5 formula, (that contains 10 mg Curcumin, and mixture 5 of span-tween mixtures that consist of 120 mg Span® 60 with 80 mg Tween® 80) was selected as the optimized formula with a desirability produced by Design Expert® software equal to 0.761, based on its particle size (212.8 ± 4.76), zeta potential (-29.4 ± 2.11), drug loading efficiency (99.788 ± 1.34), and in vitro release profile evaluations at Q 6hr equal to almost 100 %. Statistical significance (P < 0.05) was obtained using one-way ANOVA. Then F5 was used to formulate HPMC E50 gel-based preparations. The gel formula that was created and analyzed using Raman spectroscopy demonstrated no signs of incompatibility between the Curcumin and the polymers that were utilized.The confocal spectroscopy found that the anti-aging gel preparation showed promising results in terms of skin penetration. Also, images revealed that the gel could penetrate the layers of the skin (reached a depth of about 112.5 μm), where it could potentially target and reduce the appearance of fine lines and wrinkles. The gel also appeared to be well-tolerated by the skin, with no signs of irritation or inflammation observed in the images. Conclusion The obtained results successfully confirmed the potential of the promising (F5) formula to produce sustained release action and its ability to be incorporated into 2% HPMC E50 anti-aging gel. The confocal microscopy study suggested that the anti-aging gel had the potential to be an effective and safe topical treatment for aging skin.
Collapse
Affiliation(s)
- Rania El Hosary
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | - Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yousra Yousry
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | - Mahmoud Eltahan
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science and Technology, 6th October City, Egypt
| | - Ahmed Bakr
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Hussein Aboelela
- Faculty of Pharmacy, Misr University for Science and Technology, 6th October City, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science and Technology, 6th October City, Egypt
| | - Rafik M. Nassif
- Department of Pharmacognosy, Faculty of Pharmacy, Misr University for Science and Technology, 6th October City, Egypt
| |
Collapse
|
5
|
Abd-Elsalam WH, Abouelatta SM. Contemporary Techniques and Potential Transungual Drug Delivery Nanosystems for The Treatment of Onychomycosis. AAPS PharmSciTech 2023; 24:150. [PMID: 37421509 DOI: 10.1208/s12249-023-02603-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/04/2023] [Indexed: 07/10/2023] Open
Abstract
The humanoid nail is considered an exceptional protective barrier that is formed mainly from keratin. Onychomycosis is the cause of 50% of nail infections that is generally caused by dermatophytes. Firstly, the infection was regarded as a cosmetic problem but because of the tenacious nature of onychomycosis and its relapses, these infections have attracted medical attention. The first line of therapy was the oral antifungal agents which were proven to be effective; nevertheless, they exhibited hepato-toxic side effects, alongside drug interactions. Following, the opportunity was shifted to the topical remedies, as onychomycosis is rather superficial, yet this route is hindered by the keratinized layers in the nail plate. A potential alternative to overcome the obstacle was applying different mechanical, physical, and chemical methods to boost the penetration of drugs through the nail plate. Unfortunately, these methods might be expensive, require an expert to be completed, or even be followed by pain or more serious side effects. Furthermore, topical formulations such as nail lacquers and patches do not provide enough sustaining effects. Recently, newer therapies such as nanovesicles, nanoparticles, and nanoemulsions have emerged for the treatment of onychomycosis that provided effective treatment with possibly no side effects. This review states the treatment strategies such as mechanical, physical, and chemical methods, and highlights various innovative dosage forms and nanosystems developed in the last 10 years with a focus on advanced findings regarding formulation systems. Furthermore, it demonstrates the natural bioactives and their formulation as nanosystems, and the most relevant clinical outcomes.
Collapse
Affiliation(s)
- Wessam H Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Samar M Abouelatta
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Candian University, 6 October, Cairo, Egypt
| |
Collapse
|
6
|
Nair AB, Aldhubiab B, Shah J, Jacob S, Attimarad M, Sreeharsha N, Venugopala KN, Joseph A, Morsy MA. Design, Development, and Evaluation of Constant Voltage Iontophoresis for the Transungual Delivery of Efinaconazole. Pharmaceutics 2023; 15:pharmaceutics15051422. [PMID: 37242664 DOI: 10.3390/pharmaceutics15051422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
The efficacy of topical antifungal therapy in onychomycosis has been hindered by the failure of the antimycotic to permeate the nail plate. This research aims to design and develop a transungual system for the effective delivery of efinaconazole utilizing constant voltage iontophoresis. Seven prototype drug-loaded hydrogel formulations (E1-E7) were prepared to assess the influence of solvent (ethanol) and cosolvent (Labrasol®) on transungual delivery. Optimization was performed to evaluate the effect of three independent variables; voltage, solvent-to-cosolvent ratio, and penetration enhancer (PEG 400) concentration on critical quality attributes (CQAs), such as drug permeation and loading into the nail. The selected hydrogel product was characterized for pharmaceutical properties, efinaconazole release from the nail, and antifungal activity. Preliminary data indicates ethanol, Labrasol®, and voltage influence the transungual delivery of efinaconazole. Optimization design indicates a significant impact by applied voltage (p-0.0001) and enhancer concentration (p-0.0004) on the CQAs. Excellent correlation between selected independent variables and CQAs was confirmed by the high desirability value (0.9427). A significant (p < 0.0001) enhancement in the permeation (~78.59 µg/cm2) and drug loading (3.24 µg/mg) was noticed in the optimized transungual delivery with 10.5 V. FTIR spectral data indicates no interaction between the drug and excipients, while the DSC thermograms confirmed the amorphous state of the drug in the formulation. Iontophoresis produces a drug depot in the nail that releases above the minimum inhibitory concentration level for an extended period, potentially reducing the need for frequent topical treatment. Antifungal studies further substantiate the release data and have shown remarkable inhibition of Trichophyton mentagrophyte. Overall, the promising results obtained here demonstrate the prospective of this non-invasive method for the effective transungual delivery of efinaconazole, which could improve the treatment of onychomycosis.
Collapse
Affiliation(s)
- Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4000, South Africa
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
7
|
Gupta AK, Polla Ravi S, Choi SY, Konda A, Cooper EA. Strategies for the enhancement of nail plate permeation of drugs to treat onychomycosis. J Eur Acad Dermatol Venereol 2023; 37:243-255. [PMID: 36196052 DOI: 10.1111/jdv.18638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/23/2022] [Indexed: 01/18/2023]
Abstract
Onychomycosis is caused by dermatophytes, non-dermatophytes and yeasts. It has a global prevalence of 5.5%, requires long treatment periods, and has high relapse rates following therapy. Oral antifungals are generally the most common treatment. While effective, they have limitations such as drug-drug interactions, hepatotoxicity and adverse side effects; thus, they cannot be used in several populations. Topical antifungals do not have the safety limitations but are typically not as effective. The primary challenge of topical treatment is the permeation of drug molecules across the nail plate barrier, which is a highly cross-linked keratin network. The use of drugs and formulations with favourable characteristics such as small size, absence of lipophilicity, hydrophilic nature, hydrating properties and appropriate pH can greatly improve permeation. Here, we review physical, nanoparticle-based, formulation-based, mechanical and chemical drug delivery strategies to improve the permeation of drugs across the nail plate.
Collapse
Affiliation(s)
- Aditya K Gupta
- Mediprobe Research Inc., London, Ontario, Canada.,Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Su Yong Choi
- Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey, USA
| | - Adarsh Konda
- Bausch Health US, LLC, Bridgewater, New Jersey, USA
| | | |
Collapse
|
8
|
Itraconazole and Difluorinated-Curcumin Containing Chitosan Nanoparticle Loaded Hydrogel for Amelioration of Onychomycosis. Biomimetics (Basel) 2022; 7:biomimetics7040206. [PMID: 36412734 PMCID: PMC9680304 DOI: 10.3390/biomimetics7040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Onychomycosis is a nail infection caused by a fungus, Trichophyton mentagrophytes, that is responsible for major nail infections. The best method suited for treating such infections generally includes a topical remedy. However, conventional oral or topical formulations are associated with various limitations. Therefore, a more efficient and compatible formulation is developed in this study. The primary objective of the current study is to formulate and evaluate chitosan nanoparticle-based hydrogel for ameliorating onychomycosis. The sole purpose of this research was to increase the permeation of the lipophilic drug itraconazole and difluorinated curcumin, and its synergistic antifungal activity was also evaluated for the first time. Both in vitro and ex vivo drug release evaluations confirmed the sustained release of both drugs from the hydrogel, which is a prerequisite for treating onychomycosis. The results overall highlighted the promising activity of a synergistic approach that could be implemented for the treatment of onychomycosis. The hydrogel-based formulation serves as an effective method of delivery of drugs across the layers of the skin, resulting from its hydrating characteristics.
Collapse
|
9
|
Formulation-by-Design of Efinaconazole Spanlastic Nanovesicles for Transungual Delivery Using Statistical Risk Management and Multivariate Analytical Techniques. Pharmaceutics 2022; 14:pharmaceutics14071419. [PMID: 35890316 PMCID: PMC9324635 DOI: 10.3390/pharmaceutics14071419] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
As regulatory and technical landscapes for pharmaceutical formulation development are rapidly evolving, a risk-management approach using multivariate analysis is highly essential for designing a product with requisite critical quality attributes (CQA). Efinaconazole, a newly approved poorly water-soluble antifungal triazole drug has poor permeability. Spanlastics, new-generation surfactant nanovesicles, being fluidic, help improve the permeability of drugs. Therefore, we optimized efinaconazole spanlastics using the concepts of Formulation-by-Design (FbD) and explored the feasibility of transungual delivery for the management of onychomycosis. Using the Ishikawa fishbone diagram, the risk factors that may have an impact on the CQA of efinaconazole spanlastic vesicles were identified. Application of the Plackett–Burman experimental design facilitated the screening of eight different formulation and process parameters influencing particle size, transmittance, relative deformability, zeta potential, entrapment efficiency, and dissolution efficiency. With the help of Pareto charts, the three most significant factors were identified, viz., vesicle builder (Span), edge activator (Tween), and mixing time. The levels of these three critical variables were optimized by FbD to reduce the particle size and maximize the transparency, relative deformability, encapsulation efficiency, and dissolution efficiency of efinaconazole spanlastic nanovesicles. Bayesian and Lenth’s analysis and mathematical modeling of the experimental data helped to quantify the critical formulation attributes required for getting the formulation with optimum quality features. The optimized efinaconazole-loaded spanlastic vesicles had a particle size of 197 nm, transparency of 91%, relative deformability of 12.5 min, and dissolution efficiency of 81.23%. The spanlastic formulation was incorporated into a gel and explored ex vivo for transungual delivery. This explorative study provides an example of the application of principles of risk management, statistical multivariate analysis, and the FbD approach in developing efinaconazole spanlastic nanovesicles.
Collapse
|
10
|
Osman M, Kasir D, Rafei R, Kassem II, Ismail MB, El Omari K, Dabboussi F, Cazer C, Papon N, Bouchara JP, Hamze M. Trends in the epidemiology of dermatophytosis in the Middle East and North Africa region. Int J Dermatol 2021; 61:935-968. [PMID: 34766622 DOI: 10.1111/ijd.15967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Dermatophytosis corresponds to a broad series of infections, mostly superficial, caused by a group of keratinophilic and keratinolytic filamentous fungi called dermatophytes. These mycoses are currently considered to be a major public health concern worldwide, particularly in developing countries such as those in the Middle East and North Africa (MENA) region. Here we compiled and discussed existing epidemiologic data on these infections in the MENA region. Most of the available studies were based on conventional diagnostic strategies and were published before the last taxonomic revision of dermatophytes. This has led to misidentifications, which might have resulted in the underestimation of the real burden of these infections in the MENA countries. Our analysis of the available literature highlights an urgent need for further studies based on reliable diagnostic tools and standard susceptibility testing methods for dermatophytosis, which represents a major challenge for these countries. This is crucial for guiding appropriate interventions and activating antifungal stewardship programs in the future.
Collapse
Affiliation(s)
- Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Dalal Kasir
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Issmat I Kassem
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, Griffin, GA, USA
| | - Mohamad Bachar Ismail
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Faculty of Science, Lebanese University, Tripoli, Lebanon
| | - Khaled El Omari
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Quality Control Center Laboratories, Chamber of Commerce, Industry, and Agriculture of Tripoli and North Lebanon, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Casey Cazer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| | | | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
11
|
Rathod S, Arya S, Shukla R, Ray D, Aswal VK, Bahadur P, Tiwari S. Investigations on the role of edge activator upon structural transitions in Span vesicles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Smart antifungal thermosensitive chitosan/carboxymethylcellulose/scleroglucan/montmorillonite nanocomposite hydrogels for onychomycosis treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125600] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Aggarwal R, Targhotra M, Sahoo P, Chauhan MK. Onychomycosis: Novel strategies for treatment. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Tampucci S, Terreni E, Zucchetti E, Burgalassi S, Chetoni P, Monti D. Formulations Based on Natural Ingredients for the Treatment of Nail Diseases. Curr Pharm Des 2020; 26:556-565. [DOI: 10.2174/1381612826666200122150248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022]
Abstract
Nail is a strong and resistant structure, characterized by a low permeability to foreign molecules. Nails
can be subjected to many diseases, among which fungal infections (e.g. onchomycosis) are the most common and
responsible for nail structure alteration. Many formulations have been produced for the delivery of active ingredients
to treat nail disorders, based on newly synthesized active molecules or containing chemical enhancers or
chemically-modified polymers able to improve the drug transungual penetration. To avoid permanent alterations
of the nail structure due to the use of chemical compounds or organic solvent-based formulation, researchers have
developed novel formulations focusing on the use of new natural-based compounds. The purpose of this review is
to provide information on the outcoming of natural ingredients-based formulations that have been developed in
the last years as potential alternative to chemical-based formulations.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniela Monti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Vikas A, Rashmin P, Mrunali P, Chavan RB, Kaushik T. Mechanistic Insights of Formulation Approaches for the Treatment of Nail Infection: Conventional and Novel Drug Delivery Approaches. AAPS PharmSciTech 2020; 21:67. [PMID: 31938980 DOI: 10.1208/s12249-019-1591-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Onychomycosis is a chronic disorder that is difficult to manage and hard to eradicate with perilous trends to relapse. Due to increased prevalence of HIV, use of immunosuppressant drugs and lifestyle-related factors, population affected with fungal infection of nail (Onychomycosis) happens to increase extensively in last two decades. Modalities available for the treatment of onychomycosis include systemically administered antifungals, mechanical procedures, and topical drug therapy. But the efficacy of the most of approaches to deliver drug at targeted site, i.e., deep-seated infected nail bed is limited due to compact and highly keratinized nail structure. A series of advanced formulation approaches, such as transfersomes, liposomes, nano/micro emulsion, nail lacquers etc., have been attempted to improve the drug penetration into nail plate more efficiently. The manuscript reviews these formulation approaches with their possible mechanisms by which they improve the drug penetration.Comparative analysis of available treatment modalities for onychomycosis has been provided with pros and cons of each alternatives. Additionally, ongoing research about the application of biological materials such as modified cationic antimicrobial peptides (AMPs), plant-derived proteins, and synthetic antimicrobial peptidomimetics have also been explored.
Collapse
|
16
|
Dhamoon RK, Goyal RK, Popli H, Gupta M. Luliconazole-Loaded Thermosensitive Hydrogel as Aqueous based Nail Lacquer for the Treatment of Onychomycosis. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2210303109666190520081552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Onychomycosis is a nail fungal infection which accounts for 50% of the nail
diseases and is characterized by disfigurement and discoloration of nails. The current therapy includes
oral and topical formulations both of which come with their own drawbacks. This has left a room for
developing patient- compliant novel strategies which can facilitate drug delivery deeper into the nails
effectively.
Objective:
The main objective of the present work was to develop and evaluate in situ gelling thermosensitive
hydrogel as an aqueous nail lacquer for the treatment of onychomycosis. The idea was to
enhance permeation of Luliconazole into the nail while simultaneously solubilizing it in a hydrophilic
formulation.
Methods:
The sample of Luliconazole was authenticated using modern analytical techniques. The hydrogel-
nail lacquer was prepared using poloxamer Pluronic F127. The formulation was evaluated in
terms of drying time, viscosity, non- volatile content, pH, transition temperature, etc. In vitro study was
done to check the drug release while determining release kinetics. In vitro transungual permeation study
was done to check drug permeation through porcine hoof membrane. Stability studies were conducted
to ensure formulation stability.
Results:
The results confirmed a stable formulation with enhanced permeation through porcine hoof
membrane.
Conclusion:
The results support the potential use of in situ gelling thermo-sensitive hydrogels as a
novel transungual formulation in the treatment of onychomycosis with a slight improvement in water
resistance.
Collapse
Affiliation(s)
- Rupinder K. Dhamoon
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp vihar, Sector-3, M.B Road, New Delhi -110017, India
| | - Ramesh K. Goyal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp vihar, Sector-3, M.B Road, New Delhi -110017, India
| | - Harvinder Popli
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp vihar, Sector-3, M.B Road, New Delhi -110017, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp vihar, Sector-3, M.B Road, New Delhi -110017, India
| |
Collapse
|
17
|
Dhamoon RK, Popli H, Gupta M. Novel Drug Delivery Strategies for the Treatment of Onychomycosis. Pharm Nanotechnol 2019; 7:24-38. [PMID: 31092174 PMCID: PMC6691844 DOI: 10.2174/2211738507666190228104031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Onychomycosis accounts for 50% of all nail disease cases and is commonly caused by dermatophytes. It was primarily considered a cosmetic problem but has been garnering attention lately due to its persistent nature and difficult treatment with relapses. With prolonged treatment duration and high cost involved in treating onychomycosis, several attempts have been made in overcoming the rigid nail barrier. The conventional treatment of onychomycosis involves oral and topical therapy. The oral antifungal agents though quite effective, are hepato-toxic and cause drug-drug interactions. Topical therapy is more patient compliant being devoid of such adverse effects but it suffers from another setback of improper nail penetration. Amorolfine and ciclopirox nail lacquers are popular market products. Since decades, efforts have been made to enhance topical delivery for efficiently treating onychomycosis. Mechanical, physical and chemical methods have been employed. Despite all the attempts made, the nail delivery issues are far from being solved. Recently, the focus has shifted to novel drug delivery systems like nanoparticles, microemulsions, polymeric films and nail lacquers for enhanced drug permeation and localized therapy. The research around the world is exploring their potential as effective treatment options. This review intends to further explore the novel delivery strategies to treat a persistent fungal infection like onychomycosis.
Collapse
Affiliation(s)
- Rupinder K. Dhamoon
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Sector-3, M.B Road, New Delhi -110017, India
| | - Harvinder Popli
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Sector-3, M.B Road, New Delhi -110017, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Sector-3, M.B Road, New Delhi -110017, India
| |
Collapse
|
18
|
Evaluation of the promoting effect of soluble cyclodextrins in drug nail penetration. Eur J Pharm Sci 2018; 117:270-278. [DOI: 10.1016/j.ejps.2018.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 12/17/2022]
|