1
|
Li P, Askes SHC, del Pino Rosendo E, Ariese F, Ramanan C, von Hauff E, Baldi A. Nanoscale Thermometry of Plasmonic Structures via Raman Shifts in Copper Phthalocyanine. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:9690-9698. [PMID: 37255925 PMCID: PMC10226115 DOI: 10.1021/acs.jpcc.3c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/01/2023] [Indexed: 06/01/2023]
Abstract
Temperature measurements at the nanoscale are vital for the application of plasmonic structures in medical photothermal therapy and materials science but very challenging to realize in practice. In this work, we exploit a combination of surface-enhanced Raman spectroscopy together with the characteristic temperature dependence of the Raman peak maxima observed in β-phase copper phthalocyanine (β-CuPc) to measure the surface temperature of plasmonic gold nanoparticles under laser irradiation. We begin by measuring the temperature-dependent Raman shifts of the three most prominent modes of β-CuPc films coated on an array of Au nanodisks over a temperature range of 100-500 K. We then use these calibration curves to determine the temperature of an array of Au nanodisks irradiated with varying laser powers. The extracted temperatures agree quantitatively with the ones obtained via numerical modeling of electromagnetic and thermodynamic properties of the irradiated array. Thin films of β-CuPc display low extinction coefficients in the blue-green region of the visible spectrum as well as exceptional thermal stability, allowing a wide temperature range of operation of our Raman thermometer, with minimal optical distortion of the underlying structures. Thanks to the strong thermal response of the Raman shifts in β-CuPc, our work opens the opportunity to investigate photothermal effects at the nanoscale in real time.
Collapse
Affiliation(s)
- Pan Li
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Sven H. C. Askes
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | | | - Freek Ariese
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Charusheela Ramanan
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Elizabeth von Hauff
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
- Faculty
of Electrical and Computer Engineering, Technical University of Dresden, 01062 Dresden, Germany
- Fraunhofer
Institute for Organic Electronics, Electron Beam and Plasma Technology
(FEP), 01277 Dresden, Germany
| | - Andrea Baldi
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
2
|
Ricciardi L, La Deda M. Recent advances in cancer photo-theranostics: the synergistic combination of transition metal complexes and gold nanostructures. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04329-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractIn this mini review, we highlight advances in the last five years in light-activated cancer theranostics by using hybrid systems consisting of transition metal complexes (TMCs) and plasmonic gold nanostructures (AuNPs). TMCs are molecules with attractive properties and high potential in biomedical application. Due to their antiproliferative abilities, platinum-based compounds are currently first-choice drugs for the treatment of several solid tumors. Moreover, ruthenium, iridium and platinum complexes are well-known for their ability to photogenerate singlet oxygen, a highly cytotoxic reactive species with a key role in photodynamic therapy. Their potential is further extended by the unique photophysical properties, which make TMCs particularly suitable for bioimaging. Recently, gold nanoparticles (AuNPs) have been widely investigated as one of the leading nanomaterials in cancer theranostics. AuNPs—being an inert and highly biocompatible material—represent excellent drug delivery systems, overcoming most of the side effects associated with the systemic administration of anticancer drugs. Furthermore, due to the thermoplasmonic properties, AuNPs proved to be efficient nano-sources of heat for photothermal therapy application. Therefore, the hybrid combination TMC/AuNPs could represent a synergistic merger of multiple functionalities for combinatorial cancer therapy strategies. Herein, we report the most recent examples of TMC/AuNPs systems in in-vitro in-vivo cancer tharanostics application whose effects are triggered by light-exposure in the Vis–NIR region, leading to a spatial and temporal control of the TMC/AuNPs activation for light-mediated precision therapeutics.
Collapse
|
3
|
Tan X, Sun Y, Sun T, Zhang H. Mechanised lubricating silica nanoparticles for on-command cargo release on simulated surfaces of joint cavities. Chem Commun (Camb) 2019; 55:2593-2596. [DOI: 10.1039/c8cc10069a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular mechanised silica nanoparticles for controlled cargo release and lubrication enhancement are demonstrated.
Collapse
Affiliation(s)
- Xiaolong Tan
- State Key Laboratory of Tribology
- Department of Mechanical Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yulong Sun
- State Key Laboratory of Tribology
- Department of Mechanical Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Tao Sun
- State Key Laboratory of Tribology
- Department of Mechanical Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Tribology
- Department of Mechanical Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|