1
|
A Solid Self-Emulsifying Formulation for the Enhanced Solubility, Release and Digestion of Apigenin. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Coutinho TE, Souto EB, Silva AM. Selected Flavonoids to Target Melanoma: A Perspective in Nanoengineering Delivery Systems. Bioengineering (Basel) 2022; 9:bioengineering9070290. [PMID: 35877341 PMCID: PMC9311564 DOI: 10.3390/bioengineering9070290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is a complex type of cancer that depends on several metabolic factors, while the currently used therapies are not always effective and have unwanted side effects. In this review, the main factors involved in the etiology of cutaneous carcinoma are highlighted, together with the main genes and proteins that regulate cancer invasion and metastization. The role of five selected flavonoids, namely, apigenin, epigallocatechin-3-gallate, kaempferol, naringenin, and silybin, in the modulating receptor tyrosine kinase (RTK) and Wnt pathways is reported with their relevance in the future design of drugs to mitigate and/or treat melanoma. However, as phenolic compounds have some difficulties in reaching the target site, the encapsulation of these compounds in nanoparticles is a promising strategy to promote improved physicochemical stabilization of the bioactives and achieve greater bioavailability. Scientific evidence is given about the beneficial effects of loading these flavonoids into selected nanoparticles for further exploitation in the treatment of melanoma.
Collapse
Affiliation(s)
- Tiago E. Coutinho
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- Department of Biology and Environment, School of Life Sciences and Environment, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- UCIBIO/REQUIMTE, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Amélia M. Silva
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- Department of Biology and Environment, School of Life Sciences and Environment, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
- Correspondence: ; Tel.: +351-259-350-921
| |
Collapse
|
3
|
Fereig SA, El-Zaafarany GM, Arafa MG, Abdel-Mottaleb MMA. Self-assembled tacrolimus-loaded lecithin-chitosan hybrid nanoparticles for in vivo management of psoriasis. Int J Pharm 2021; 608:121114. [PMID: 34543618 DOI: 10.1016/j.ijpharm.2021.121114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/04/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Lecithin-chitosan hybrid nanoparticles are emerging as a promising nanocarrier for topical drug delivery. They could achieve a maximized encapsulation of hydrophobic drugs due to the lipophilic nature of lecithin that comprises the core while enhancing retention in the upper skin layers using the positively charged polymeric coat of chitosan. The aim of this study is to incorporate tacrolimus; a hydrophobic anti-proliferative agent into lecithin chitosan hybrid nanoparticles by ethanolic injection technique using a suitable co-solvent to enhance encapsulation of the drug and allow a satisfactory release profile in the upper skin layers. Tacrolimus was successfully incorporated into the synthesized particles using olive oil and Tween 80 as co-solvents, with particle size (160.9 nm ± 15.9 and 118.7 nm ± 13.3, respectively) and EE (88.27% ± 4.3 and 66.72% ± 1.8, respectively). The in vitro drug release profile showed a faster release pattern for the Tween 80-containing particles over a 48-hour period (79.98% vs. 35.57%), hence, were selected for further investigation. The hybrid nanoparticles achieved significantly higher skin deposition than the marketed product (63.51% vs. 34.07%) through a 24-hour time interval, particularly, to the stratum corneum and epidermis skin layers. The in vivo results on IMQ-mouse models revealed superior anti-psoriatic efficacy of the synthesized nanoparticles in comparison to the marketed product in terms of visual observation of the skin condition, PASI score and histopathological examination of autopsy skin samples. Additionally, the in vivo drug deposition showed superior skin deposition of the nanoparticles compared to the marketed product (74.9% vs. 13.4%).
Collapse
Affiliation(s)
- Salma A Fereig
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk City, Egypt
| | - Ghada M El-Zaafarany
- Department of pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk City, Egypt; Chemotherapeutic unit, Mansoura University Hospitals, Mansoura, Egypt
| | - Mona M A Abdel-Mottaleb
- Department of pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
Bayoumi M, Arafa MG, Nasr M, Sammour OA. Nobiletin-loaded composite penetration enhancer vesicles restore the normal miRNA expression and the chief defence antioxidant levels in skin cancer. Sci Rep 2021; 11:20197. [PMID: 34642396 PMCID: PMC8511031 DOI: 10.1038/s41598-021-99756-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Skin cancer is one of the most dangerous diseases, leading to massive losses and high death rates worldwide. Topical delivery of nutraceuticals is considered a suitable approach for efficient and safe treatment of skin cancer. Nobiletin; a flavone occurring in citrus fruits has been reported to inhibit proliferation of carcinogenesis since 1990s, is a promising candidate in this regard. Nobiletin was loaded in various vesicular systems to improve its cytotoxicity against skin cancer. Vesicles were prepared using the thin film hydration method, and characterized for particle size, zeta potential, entrapment efficiency, TEM, ex-vivo skin deposition and physical stability. Nobiletin-loaded composite penetration enhancer vesicles (PEVs) and composite transfersomes exhibited particle size 126.70 ± 11.80 nm, 110.10 ± 0.90 nm, zeta potential + 6.10 ± 0.40 mV, + 9.80 ± 2.60 mV, entrapment efficiency 93.50% ± 3.60, 95.60% ± 1.50 and total skin deposition 95.30% ± 3.40, 100.00% ± 2.80, respectively. These formulations were selected for cytotoxicity study on epidermoid carcinoma cell line (A431). Nobiletin-loaded composite PEVs displayed the lowest IC50 value, thus was selected for the in vivo study, where it restored skin condition in DMBA induced skin carcinogenesis mice, as delineated by histological and immuno-histochemical analysis, biochemical assessment of skin oxidative stress biomarkers, in addition to miRNA21 and miRNA29A. The outcomes confirmed that nobiletin- loaded composite PEVs is an efficient delivery system combating skin cancer.
Collapse
Affiliation(s)
- Mahitab Bayoumi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, 35516, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Organization Unity Street, Cairo, 11561, Egypt.
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Organization Unity Street, Cairo, 11561, Egypt
| |
Collapse
|
5
|
Enhancement of bioavailability through transdermal drug delivery of paliperidone palmitate-loaded nanostructured lipid carriers. Ther Deliv 2021; 12:583-596. [PMID: 34286598 DOI: 10.4155/tde-2021-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The work describes enhanced bioavailability of paliperidone palmitate through transdermal delivery using nanostructured lipid carriers (NLC). Materials & methods: NLCs were formulated by nanoprecipitation method followed by incorporation in transdermal patch and physicochemical characterization. Results: NLCs showed high percentage entrapment efficiency of 83.44 ± 0.8%, drug loading of 24.75 ± 1.10% (w/w), particle size of 173.8 ± 3.25 nm, polydispersity index of 0.143 ± 0.05 and zeta potential of -15.9 ± 0.75 mV. In vitro and ex vivo studies indicated zero-order controlled drug release from NLCs and transdermal patch up to 48 h. Pharmacokinetic studies indicated 1.76-fold enhanced bioavailability by transdermal route as compared with oral drug delivery. Conclusion: From the results, it was concluded that drug-loaded NLCs-transdermal patch is promising drug delivery system for poorly bioavailable drugs.
Collapse
|
6
|
Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation. Colloids Surf B Biointerfaces 2021; 203:111748. [PMID: 33853001 DOI: 10.1016/j.colsurfb.2021.111748] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/12/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
The advent of nanocarriers in the field of pharmaceutical drug delivery, while exhibiting considerable advantages, has created challenges for researchers. Among the applications of nanocarriers, drug delivery to the skin has attracted increasing attention in recent decades due to its advantages over oral and parenteral administration. Accordingly, this work attempts to discuss the major obstacles surrounding topically applied formulations and different nanocarriers' potential to overcome these barriers to investigate whether their passive penetration through the skin is likely. Therefore, skin anatomical views and transcutaneous pathways are briefly reviewed. Factors commonly thought to influence skin penetration are discussed from the perspective of particularly penetrating nanocarriers. The formulation of these nanocarriers is outlined, and promising constituents are highlighted to help investigators optimize nanocarrier formulations.
Collapse
|
7
|
Uchida N, Yanagi M, Hamada H. Physical Enhancement? Nanocarrier? Current Progress in Transdermal Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:335. [PMID: 33525364 PMCID: PMC7911274 DOI: 10.3390/nano11020335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
A transdermal drug delivery system (TDDS) is a method that provides drug adsorption via the skin. TDDS could replace conventional oral administration and blood administration because it is easily accessible. However, it is still difficult to design efficient TDDS due to the high barrier property of skin covered with stratum corneum, which inhibits the permeation of drug molecules. Thus far, TDDS methods by applying physical stimuli such as microneedles and chemical stimuli such as surfactants have been actively developed. However, it has been hard to avoid inflammation at the administration site because these methods partially destroy the skin tissue. On the other hand, TDDS with nanocarriers minimizing damage to the skin tissues has emerged together with the development of nanotechnology in recent years. This review focuses on current trends in TDDS.
Collapse
Affiliation(s)
- Noriyuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Yanagi
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai Kita, Okayama 700-0005, Japan;
| | - Hiroki Hamada
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai Kita, Okayama 700-0005, Japan;
| |
Collapse
|
8
|
Preparation and characterization of novel pseudo ceramide liposomes for the transdermal delivery of baicalein. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|