1
|
Gao Y, Sun L, Qiao C, Liu Y, Wang Y, Feng R, Zhang H, Zhang Y. Cyclodextrin-based delivery systems for chemical and genetic drugs: Current status and future. Carbohydr Polym 2025; 352:123174. [PMID: 39843078 DOI: 10.1016/j.carbpol.2024.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/01/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Cyclodextrins (CDs) are cyclic polysaccharides characterized by their unique hollow structure, making them highly effective carriers for pharmaceutical agents. CD-based delivery systems are extensively utilized to enhance drug stability, increase solubility, improve oral bioavailability, and facilitate controlled release and targeted delivery. This review initially provides a concise overview of nano drug delivery systems, followed by a detailed introduction of the structural features and benefits of CDs. It further summarizes the applications of CD-based delivery systems and offers insights for the rational design of drug delivery systems. In this review, CD-based delivery systems are categorized into several types, such as covalently modified CD derivatives, non-modified CD inclusion complexes, poly-cyclodextrins and others. The application of CD-based systems for the delivery of genetic therapeutic agents and co-delivery of gene and drug is also presented. Finally, this review discusses potential challenges and opportunities that may arise in the future. With the development of nanotechnology and optimization of preparation process, CD-based drug delivery systems will provide a more effective, precise and safe approach to drug therapy.
Collapse
Affiliation(s)
- Yikun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Le Sun
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Chu Qiao
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yuqing Liu
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rui Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Hong Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Youxi Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
2
|
Alkhalidi HM, Alahmadi AA, Rizg WY, Yahya EB, H P S AK, Mushtaq RY, Badr MY, Safhi AY, Hosny KM. Revolutionizing Cancer Treatment: Biopolymer-Based Aerogels as Smart Platforms for Targeted Drug Delivery. Macromol Rapid Commun 2024; 45:e2300687. [PMID: 38430068 DOI: 10.1002/marc.202300687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Cancer stands as a leading cause of global mortality, with chemotherapy being a pivotal treatment approach, either alone or in conjunction with other therapies. The primary goal of these therapies is to inhibit the growth of cancer cells specifically, while minimizing harm to healthy dividing cells. Conventional treatments, often causing patient discomfort due to side effects, have led researchers to explore innovative, targeted cancer cell therapies. Thus, biopolymer-based aerogels emerge as innovative platforms, showcasing unique properties that respond intelligently to diverse stimuli. This responsiveness enables precise control over the release of anticancer drugs, enhancing therapeutic outcomes. The significance of these aerogels lies in their ability to offer targeted drug delivery with increased efficacy, biocompatibility, and a high drug payload. In this comprehensive review, the author discuss the role of biopolymer-based aerogels as an emerging functionalized platforms in anticancer drug delivery. The review addresses the unique properties of biopolymer-based aerogels showing their smart behavior in responding to different stimuli including temperature, pH, magnetic and redox potential to control anticancer drug release. Finally, the review discusses the application of different biopolymer-based aerogel in delivering different anticancer drugs and also discusses the potential of these platforms in gene delivery applications.
Collapse
Affiliation(s)
- Hala M Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amerh Aiad Alahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine, 3D Bioprinting Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Abdul Khalil H P S
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Rayan Y Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Moutaz Y Badr
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
3
|
Alva-Ensastegui J, Morales-Avila E, de la Luz AP, Bernad-Bernad M. Determination of pKa values and deprotonation order of methotrexate using a combined experimental-theoretical study and binding constants of the methotrexate-Laponite complex at different pH values. J Photochem Photobiol A Chem 2024; 449:115406. [DOI: 10.1016/j.jphotochem.2023.115406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Zhu P, Lv P, Zhang Y, Liao R, Liu J, Guo R, Chen X, Liao X, Gao C, Zhang K, Yang M, Yang B. Self-Assembly System Based on Cyclodextrin for Targeted Delivery of Cannabidiol. Front Chem 2021; 9:754832. [PMID: 34820356 PMCID: PMC8606678 DOI: 10.3389/fchem.2021.754832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022] Open
Abstract
Cannabidiol (CBD) is one specific kind of the cannabinoid in Cannabis sativa L with a wide range of pharmacological activities. However, the poor water solubility and specificity of CBD limits its application in pharmaceutical field. For solving these problems, in this work, we successfully prepared a targeted carrier by grafting biotin (BIO) onto ethylenediamine-β-Cyclodextrin (EN-CD) in a single step to generate a functionalized supramolecule, named BIO-CD. Subsequently, an amantadine-conjugated cannabinoids (AD-CBD) was prepared and self-assembled with the BIO-CD. A series of methods were used to characterize the inclusion behavior and physicochemical properties of AD-CBD and BIO-CD. The results showed that AD-CBD entered the cavity of BIO-CD and formed a 1:1 host-guest inclusion complex. MTT assay and confocal laser scanning microscopy (CLSM) revealed that the targeting effect and anticancer activity of AD-CBD/BIO-CD inclusion complex against three human cancer cell lines were higher than BIO-CD, AD-CBD and free CBD. Moreover, the inclusion complex could release drugs under weakly acidic conditions. These results demonstrated that AD-CBD/BIO-CD inclusion complex possess excellent targeted and anticancer activity, which is hopeful to be applied in clinic as a new therapeutic approach.
Collapse
Affiliation(s)
- Panyong Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Pin Lv
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Industrial Crop Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yazhou Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongqiang Liao
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Jing Liu
- The Affiliated of Stomatology, Kunming Medical University, Kunming, China
| | - Rong Guo
- Industrial Crop Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xuan Chen
- Industrial Crop Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Kun Zhang
- School of Agriculture, Yunnan University, Kunming, China
| | - Ming Yang
- Industrial Crop Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
5
|
Li D, Li Y, Wu Q, Xiao P, Wang L, Wang D, Tang BZ. Add the Finishing Touch: Molecular Engineering of Conjugated Small Molecule for High-Performance AIE Luminogen in Multimodal Phototheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102044. [PMID: 34342937 DOI: 10.1002/smll.202102044] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Phototheranostics based on luminogens with aggregation-induced emission (AIE) characteristics is captivating increasing research interest nowadays. However, AIE luminogens are inherently featured by inferior absorption coefficients (ε) resulting from the distorted molecular geometry. Besides, molecular innovation of long-wavelength light-excitable AIE luminogens with highly efficient phototheranostic outputs is an appealing yet significantly challenging task. Herein, on the basis of a fused-ring electron acceptor-donator-acceptor (A-D-A) type molecule (IDT) with aggregation-caused quenching (ACQ) properties, molecular engineering smoothly proceeds and successfully yields a novel AIE luminogen (IDT-TPE) via simply modifying tetraphenylethene (TPE) moieties on the sides of IDT backbone. The AIE tendency endows IDT-TPE nanoparticles with enhanced fluorescence brightness and far superior fluorescence imaging performance to IDT nanoparticles for mice tumors. Moreover, IDT-TPE nanoparticles exhibit near-infrared light-excitable features with a high ε of 8.9 × 104 m-1 cm-1 , which is roughly an order of magnitude higher than that of most previously reported AIE luminogens. Combining with their reactive oxygen species generation capability and extremely high photothermal conversion efficiency (59.7%), IDT-TPE nanoparticles actualize unprecedented performance in multimodal phototheranostics. This study thus brings useful insights into the development of versatile phototheranostic materials with great potential for practical cancer theranostics.
Collapse
Affiliation(s)
- Dan Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Youmei Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qian Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
6
|
Zhu P, Chen L, Zhao Y, Gao C, Yang J, Liao X, Liu D, Yang B. A novel host-guest complex based on biotin functionalized polyamine-β-cyclodextrin for tumor targeted delivery of luteolin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Yang W, Yang L, Li F, Zhao Y, Liao X, Gao C, Yang J, Yang B. pH-sensitive β-cyclodextrin derivatives for the controlled release of Podophyllotoxin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Alginate-Based Platforms for Cancer-Targeted Drug Delivery. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1487259. [PMID: 33083451 PMCID: PMC7563048 DOI: 10.1155/2020/1487259] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
As an acidic, ocean colloid polysaccharide, alginate is both a biopolymer and a polyelectrolyte that is considered to be biocompatible, nontoxic, nonimmunogenic, and biodegradable. A significant number of studies have confirmed the potential use of alginate-based platforms as effective vehicles for drug delivery for cancer-targeted treatment. In this review, the focus is on the formation of alginate-based cancer-targeted delivery systems. Specifically, some general chemical and physical properties of alginate and different types of alginate-based delivery systems are discussed, and various kinds of alginate-based carriers are introduced. Finally, recent innovative strategies to functionalize alginate-based vehicles for cancer targeting are described to highlight research towards the optimization of alginate.
Collapse
|
9
|
Tian B, Hua S, Liu J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr Polym 2020; 232:115805. [DOI: 10.1016/j.carbpol.2019.115805] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
|
10
|
Liu M, Wang B, Guo C, Hou X, Cheng Z, Chen D. Novel multifunctional triple folic acid, biotin and CD44 targeting pH-sensitive nano-actiniaes for breast cancer combinational therapy. Drug Deliv 2020; 26:1002-1016. [PMID: 31571501 PMCID: PMC6781222 DOI: 10.1080/10717544.2019.1669734] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this study, novel multifunctional folic acid, biotin, and CD44 receptors targeted and pH-sensitive “nano-actiniaes” were fabricated with icariin (ICA) and curcumin (Cur) as loaded model drugs for breast cancer therapy. The newly synthesized polymer oligomeric hyaluronic acid-hydrazone bond-folic acid-biotin (Bio-oHA-Hyd-FA) was characterized by 1H NMR spectrogram (proton nuclear magnetic resonance). The obtained drug carrier Bio-oHA-Hyd-FA self-assembled into nanomicelles, named as “nano-actiniaes”, in aqueous media with hydrodynamic diameter of 162.7 ± 5 nm. The size, surface zeta potential, and morphology of the “nano-actiniaes” were observed via TEM. The in vitro release experiment indicated that much more encapsulated icariin (ICA) and curcumin (Cur) were released from the Bio-oHA-Hyd-FA micelles (nano-actiniaes) in the acidic environment. Additionally, the cytotoxicity research demonstrated that the Bio-oHA-Hyd-FA carrier material was completely nontoxic, and the ICA&Cur “nano-actiniaes” had greater cytotoxicity compared with other control groups. In addition, the “nano-actiniaes” were found to significantly inhibit cancer cell invasion by Transwell assay. Moreover, in vivo evaluation of anti-tumor effect illustrated that the ICA and Cur “nano-actiniaes” possessed inhibitory effect on tumors. Consequently, the multi-targeted pH-sensitive “nano-actiniaes” can realize significant tumor targeting and effectively inhibit tumor growth.
Collapse
Affiliation(s)
- Mengna Liu
- School of Pharmacy, Yantai University , Yantai , PR China
| | - Bingjie Wang
- School of Pharmacy, Yantai University , Yantai , PR China
| | - Chunjing Guo
- School of Pharmacy, Yantai University , Yantai , PR China
| | - Xiaoya Hou
- School of Pharmacy, Yantai University , Yantai , PR China
| | - Ziting Cheng
- School of Pharmacy, Yantai University , Yantai , PR China
| | - Daquan Chen
- School of Pharmacy, Yantai University , Yantai , PR China
| |
Collapse
|
11
|
Li F, Yang W, Kong L, Hong H, Liao X, Zhao Y, Gao C, Yang B. Host-guest inclusion systems of podophyllotoxin with β-cyclodextrin derivatives for low cytotoxicity. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|