1
|
Tiwari R, Kolli M, Chauhan S, Yallapu MM. Tabletized Nanomedicine: From the Current Scenario to Developing Future Medicine. ACS NANO 2024; 18:11503-11524. [PMID: 38629397 DOI: 10.1021/acsnano.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The limitations of conventional therapeutic treatments prevailed in the development of nanotechnology-based medical formulations, termed nanomedicine. Nanomedicine is an advanced medicine that often consists of therapeutic agent(s) embedded in biodegradable or biocompatible nanomaterial-based formulations. Among nanomedicine approaches, tablet (oral) nanomedicine is still under development. In tabletized nanomedicine, the dynamic interplay between nanoformulations and the intricate milieu of the gastrointestinal tract simulates a pivotal role, particularly accentuating the influence exerted upon the luminal, mucosal, and epithelial cells. In this work, we document the perspectives and opportunities of nanoformulations toward the development of tabletized nanomedicine. This review also unveils the notion of integrating nanomedicine within a tablet formulation, which facilitates the controlled release of drugs, biomolecules, and agent(s) from the formulation to achieve a better therapeutic response. Finally, an attempt was made to explore current trends in nanomedicine technology such as bacteriophage, probiotic, and oligonucleotide tabletized nanomedicine and the combination of nanomedicine with imaging agents, i.e., nanotheranostics.
Collapse
Affiliation(s)
- Rahul Tiwari
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Meghana Kolli
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Sumeet Chauhan
- Department of Biology, College of Science, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| |
Collapse
|
2
|
Zheng K, Zhao J, Wang Q, Zhao Y, Yang H, Yang X, He L. Design and Evaluation of Ginkgolides Gastric Floating Controlled Release Tablets Based on Solid Supersaturated Self-nanoemulsifying. AAPS PharmSciTech 2023; 25:7. [PMID: 38147267 DOI: 10.1208/s12249-023-02717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023] Open
Abstract
Ginkgolides are receptor antagonist of platelet activating factor with great clinical prospect, but its application is limited by its low solubility, short half-life and poor alkaline environment stability. It is difficult to solve these problems with a single drug delivery system. In this study, supersaturated self-nanoemulsifying gastric floating tablets of ginkgolides were developed through the combination of solid supersaturated self-nanoemulsifying drug delivery system (solid S-SNEDDS) and gastric retentive floating drug delivery system (GFDDS) to solve these problems of ginkgolides. Solid S-SNEDDS was prepared by D-optimal mixture design, normalization method and single factor experiment. The properties of solid-S-SNEDDS were studied by TEM, PXRD, FT-IR, SEM and in vitro drug release profile. Then, the optimal formulation of stomach floating tablet was obtained through single factor experiment and center composite design, followed by the study of in vitro release, model and mechanism of release, in vitro buoyancy and kinetics of erosion and swelling. PXRD and FT-IR showed that the drug in solid S-SNEDDS existed in an amorphous manner and formed hydrogen bond with excipients. The results showed that the cumulative release of GA and GB in the optimal tablets was 96.12% and 92.57% higher than the simple tablets within 12 h. The release mechanism of the tablet was skeleton erosion and drug diffusion. In 12 h, the optimal tablets can float stably in vitro and release the drug at a constant rate, with a cumulative release of more than 80%. In summary, the combination of SNEDDS and GFDDS is a promising means to solve the problems of ginkgolides.
Collapse
Affiliation(s)
- Kai Zheng
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Jing Zhao
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Qiuli Wang
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Yuyang Zhao
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Husheng Yang
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Xinggang Yang
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China.
| | - Lian He
- Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Shenyang, 110042, China.
- Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Shenyang, 110042, China.
| |
Collapse
|
3
|
Rocha B, de Morais LA, Viana MC, Carneiro G. Promising strategies for improving oral bioavailability of poor water-soluble drugs. Expert Opin Drug Discov 2023; 18:615-627. [PMID: 37157841 DOI: 10.1080/17460441.2023.2211801] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Oral administration of poorly water-soluble drugs (PWSDs) is generally related to low bioavailability, leading to high drug doses, multiple side effects, and low patient compliance. Thus, different strategies have been developed to increase drug solubility and dissolution in the gastrointestinal tract, opening new venues for these drugs. AREAS COVERED This review outlines the current challenges in PWSD formulation development and the strategies to overcome the oral barriers and increase their solubility and bioavailability. Conventional strategies include altering crystalline and molecular structures and modifying oral solid dosage forms. In contrast, novel strategies comprise micro- and nanostructured systems. Recent representative studies involving how these strategies have improved the oral bioavailability of PWSDs were also reviewed and reported. EXPERT OPINION New approaches to enhance PWSD bioavailability have sought to improve water solubility and dissolution rates, drug protection by overcoming biological barriers, and increased absorption. Still, only a handful of studies have focused on quantifying the increase in bioavailability. Improving the oral bioavailability of PWSDs remains an exciting unexplored field of research and has become an important issue for successfully developing pharmaceutical products.
Collapse
Affiliation(s)
- Bruna Rocha
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Letícia Aparecida de Morais
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Mateus Costa Viana
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Guilherme Carneiro
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| |
Collapse
|
4
|
Uthumansha U, Prabahar K, Gajapathy DB, El-Sherbiny M, Elsherbiny N, Qushawy M. Optimization and In Vitro Characterization of Telmisartan Loaded Sodium Alginate Beads and Its In Vivo Efficacy Investigation in Hypertensive Induced Animal Model. Pharmaceutics 2023; 15:pharmaceutics15020709. [PMID: 36840031 PMCID: PMC9959044 DOI: 10.3390/pharmaceutics15020709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Antihypertensive drug telmisartan (TEL) belongs to BCS class II, which is characterized by low water solubility and, consequently, low oral bioavailability. Gastroretentive systems may overcome the problems associated with low solubility of TEL and incomplete absorption by localizing the drug release in the stomach. The purpose of this study was to prepare TEL-loaded, oil-entrapped, floating alginate beads with the intent of enhancing the oral bioavailability of TEL for the treatment of hypertension. METHODS For the formulation and optimization of seventeen formulations of TEL-loaded oil-entrapped floating alginate beads, a central composite design was utilized. The concentration of sodium alginate (X1), the concentration of cross-linker (X2), and the concentration of sesame oil (X3) served as independent variables, whereas the entrapment efficiency (Y1), in vitro buoyancy (Y2), and drug release Q6h (Y3) served as dependent variables. Using the emulsion gelation method and calcium chloride as the cross-linking agent, different formulations of TEL alginate beads were produced. All formulations were evaluated for their entrapment efficiency percentage, in vitro buoyancy, and in vitro drug release. The optimal formulation of TEL alginate beads was prepared with and without oil and evaluated for entrapment efficiency percentage, in vitro buoyancy, swelling ratio, average size, and in vitro drug release. Using scanning electron microscopes, the surface morphology was determined. Using IR spectroscopy, the compatibility between the ingredients was determined. In vivo evaluation of the optimized formulation in comparison to the free TEL was done in hypertension-induced rats, and the systolic blood pressure and all pharmacokinetic parameters were measured. RESULTS The prepared beads exhibited a high entrapment efficiency percentage, in vitro buoyancy, and prolonged drug release. TEL was compatible with other ingredients, as approved by IR spectroscopy. The prepared TEL beads were spherical, as shown by the SEM. The relative bioavailability of TEL-loaded oil-entrapped beads was 222.52%, which was higher than that of the pure TEL suspension. The prepared TEL beads formulation exhibited a higher antihypertensive effect for a prolonged time compared to pure TEL suspension. CONCLUSIONS It can be concluded that this innovative delivery method of TEL-loaded oil-entrapped beads is a promising tool for enhancing drug solubility and, thus, oral bioavailability and therapeutic efficacy, resulting in enhanced patient compliance. Furthermore, the in vivo study confirmed the formulation's extended anti-hypertensive activity in animal models.
Collapse
Affiliation(s)
- Ubaidulla Uthumansha
- Department of Pharmaceutics, Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
- Correspondence: or ; Tel.: +91-9677781834
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh 13713, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Dakahlia, Egypt
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Dakahlia, Egypt
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish 45511, North Sinai, Egypt
| |
Collapse
|
5
|
A Current Overview of Cyclodextrin-Based Nanocarriers for Enhanced Antifungal Delivery. Pharmaceuticals (Basel) 2022; 15:ph15121447. [PMID: 36558897 PMCID: PMC9785708 DOI: 10.3390/ph15121447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Fungal infections are an extremely serious health problem, particularly in patients with compromised immune systems. Most antifungal agents have low aqueous solubility, which may hamper their bioavailability. Their complexation with cyclodextrins (CDs) could increase the solubility of antifungals, facilitating their antifungal efficacy. Nanoparticulate systems are promising carriers for antifungal delivery due to their ability to overcome the drawbacks of conventional dosage forms. CD-based nanocarriers could form beneficial combinations of CDs and nanoparticulate platforms. These systems have synergistic or additive effects regarding improved drug loading, enhanced chemical stability, and enhanced drug permeation through membranes, thereby increasing the bioavailability of drugs. Here, an application of CD in antifungal drug formulations is reviewed. CD-based nanocarriers, such as nanoparticles, liposomes, nanoemulsions, nanofibers, and in situ gels, enhancing antifungal activity in a controlled-release manner and possessing good toxicological profiles, are described. Additionally, the examples of current, updated CD-based nanocarriers loaded with antifungal drugs for delivery by various routes of administration are discussed and summarized.
Collapse
|
6
|
Mehmood S, Farid Hasan SM, Noor R, Sikandar M, Mohani SNUH, Israr F, Ali SI, ullah M, Hassan F. Influence of Prunus domestica gum on the release profiles of propranolol HCl floating tablets. PLoS One 2022; 17:e0271442. [PMID: 36018842 PMCID: PMC9417000 DOI: 10.1371/journal.pone.0271442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Propranolol hydrochloride is a beta-blocker used for the management and treatment of hypertension, angina, coronary artery disease, heart failure, fibrillation, tremors, migraine etc. The objective of the present study was to design Propranolol Hydrochloride floating tablets by direct compression method and to explore the role of a new gum as a matrix former. A 22 full factorial design was selected for the present study. Prunus domestica gum and HPMC (K4M) were used as independent variables, swelling index and drug dissolution at 12 hours as dependent variables. Formulations were subjected to pre- and post-compression tests that showed good micromeritics and buoyancy characteristics (Carr’s index 11.76%–14.00%, Hausner’s ratio 1.13°–1.16°, angle of repose 22.67°–25.21°, floating lag time 56–76 seconds, total floating time 18–25 hours and swelling index 59.87%–139.66%). The cumulative drug release in 0.1 N HCl at 12 hours was 72%–90% (p<0.05). Weibull model was found to be the best fit model (R2>0.99) among all other studied models. Multiple regression showed a significant effect of Prunus domestica gum and HPMC K4M on the swelling index and dissolution profiles of propranolol HCl (p<0.05). On the basis of better in-vitro performance and cost-effectiveness, formulation F4 was the best formulation. It is evident from the results that Prunus domestica gum possesses excellent drug release retardant potential for the floating drug delivery system and this new gum should be further explored alone or with other natural and synthetic polymers in future studies.
Collapse
Affiliation(s)
- Salman Mehmood
- Department of Pharmaceutics, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Muhammad Farid Hasan
- Department of Pharmaceutics, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
- * E-mail:
| | - Rabia Noor
- Department of Pharmaceutics, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Sikandar
- Department of Pharmaceutics, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | | | - Fauzia Israr
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Syed Imran Ali
- Department of Pharmacy Practice, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Majeed ullah
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Fouzia Hassan
- Department of Pharmaceutics, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
7
|
Development and characterization of bilayered tablets of diazepam for oral drug delivery: design, optimization and in vitro evaluation. Ther Deliv 2022; 13:221-231. [PMID: 35306880 DOI: 10.4155/tde-2021-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aims: The oral bioavailability of drugs can be limited by their short residence time in the gastrointestinal tract. This study was performed to design bilayered floating tablets of diazepam comprising immediate-release and controlled-release layers. Methods: The tablets were prepared using sodium starch glycolate, polyvinyl pyrrolidone, hydroxypropyl methylcellulose and microcrystalline cellulose and evaluated for their characteristics. Results: The optimized formulation was found to be buoyant for 8 h on simulated gastric fluid. Hydroxypropyl methylcellulose K4M and microcrystalline cellulose sustained the release of diazepam from the controlled-release layer. The optimized formulation exhibited an extended release period of 8 h. Discussion/conclusion: It can be concluded that bilayered tablets of diazepam may extend the residence time of the drug at the site of absorption.
Collapse
|
8
|
Gülbağ Pınar S, Pezik E, Mutlu Ağardan B, Çelebi N. Development of cyclosporine A nanosuspension: cytotoxicity and permeability on Caco-2 cell lines. Pharm Dev Technol 2021; 27:52-62. [PMID: 34931593 DOI: 10.1080/10837450.2021.2020817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cyclosporine A is a calcineurin inhibitor and is usually used as an immunosuppressant medication. The main purpose of this study is to develop nanosuspension of polypeptide cyclosporine A by using the wet milling method for oral administration. Cell culture studies were also performed with human intestinal Caco-2 cell lines. Hydroxypropyl methylcellulose and sodium dodecyl sulfate were used as stabilizers in nanosuspension. In vitro characterization studies such as Fourier-transform infrared analysis and morphological imaging with scanning electron microscopy have been carried out with obtained cyclosporine A nanosuspension. The particle size, particle size distribution, and zeta potential values of the nanosuspension were measured approximately 400 nm, 0.4, and -25 mV, respectively. The solubility of cyclosporine A was increased 4.5 times in nanosuspension compared to the coarse cyclosporine A powder. As a result of cytotoxicity studies conducted with different concentrations, it was decided to conduct permeability studies at a dose equivalent to 150 µg/mL cyclosporine A. Permeation studies have shown that the nanosuspension increases cyclosporine A transport by 5 and 1.5 times, respectively, compared to coarse powder and commercial product.
Collapse
Affiliation(s)
- Sıla Gülbağ Pınar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey
| | - Esra Pezik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Başaran Mutlu Ağardan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Nevin Çelebi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Başkent University, Ankara, Turkey
| |
Collapse
|
9
|
Iglesias N, Galbis E, Valencia C, Díaz-Blanco MJ, Lacroix B, de-Paz MV. Biodegradable double cross-linked chitosan hydrogels for drug delivery: Impact of chemistry on rheological and pharmacological performance. Int J Biol Macromol 2020; 165:2205-2218. [DOI: 10.1016/j.ijbiomac.2020.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022]
|
10
|
|
11
|
In-Depth Study into Polymeric Materials in Low-Density Gastroretentive Formulations. Pharmaceutics 2020; 12:pharmaceutics12070636. [PMID: 32645909 PMCID: PMC7408198 DOI: 10.3390/pharmaceutics12070636] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/01/2022] Open
Abstract
The extensive use of oral dosage forms for the treatment of diseases may be linked to deficient pharmacokinetic properties. In some cases the drug is barely soluble; in others, the rapid transit of the formulation through the gastrointestinal tract (GIT) makes it difficult to achieve therapeutic levels in the organism; moreover, some drugs must act locally due to a gastric pathology, but the time they remain in the stomach is short. The use of formulations capable of improving all these parameters, as well as increasing the resident time in the stomach, has been the target of numerous research works, with low-density systems being the most promising and widely explored, however, there is further scope to improve these systems. There are a vast variety of polymeric materials used in low-density gastroretentive systems and a number of methods to improve the bioavailability of the drugs. This works aims to expedite the development of breakthrough approaches by providing an in-depth understanding of the polymeric materials currently used, both natural and synthetic, their properties, advantages, and drawbacks.
Collapse
|
12
|
Schneider F, Koziolek M, Weitschies W. In Vitro and In Vivo Test Methods for the Evaluation of Gastroretentive Dosage Forms. Pharmaceutics 2019; 11:E416. [PMID: 31426417 PMCID: PMC6723944 DOI: 10.3390/pharmaceutics11080416] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
More than 50 years ago, the first concepts for gastroretentive drug delivery systems were developed. Despite extensive research in this field, there is no single formulation concept for which reliable gastroretention has been demonstrated under different prandial conditions. Thus, gastroretention remains the holy grail of oral drug delivery. One of the major reasons for the various setbacks in this field is the lack of predictive in vitro and in vivo test methods used during preclinical development. In most cases, human gastrointestinal physiology is not properly considered, which leads to the application of inappropriate in vitro and animal models. Moreover, conditions in the stomach are often not fully understood. Important aspects such as the kinetics of fluid volumes, gastric pH or mechanical stresses have to be considered in a realistic manner, otherwise, the gastroretentive potential as well as drug release of novel formulations cannot be assessed correctly in preclinical studies. This review, therefore, highlights the most important aspects of human gastrointestinal physiology and discusses their potential implications for the evaluation of gastroretentive drug delivery systems.
Collapse
Affiliation(s)
- Felix Schneider
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Mirko Koziolek
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany.
| |
Collapse
|
13
|
Gaikwad SS, Avari JG. Improved bioavailability of Azelnidipine gastro retentive tablets-optimization and in-vivo assessment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109800. [PMID: 31349458 DOI: 10.1016/j.msec.2019.109800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/18/2019] [Accepted: 05/26/2019] [Indexed: 11/17/2022]
Abstract
Azelnidipine, dihydropyridine based calcium channel blocker has been used for treating ischemic heart disease and cardiac remodeling after myocardial infarction but it is having a low bioavailability due to its poor solubility. The present study is to investigate the formulation and evaluation of floating tablets of Azelnidipine for controlled release and to increase bioavailability by increasing the gastrointestinal transit time and mucoadhesion of drug. The gastro retentive tablets were prepared by direct compression method using different concentrations of combination of Polyoxyethylene oxide WSR 303 as hydrophilic polymer and Potassium bicarbonate as gas generating agent. Main effects of the formulation variables were evaluated quantitatively using design approach showing that both independent variables have significant effects on floating lag time, % drug release at 1 h (D1 h) and time required to release 90% of the drug (t90). The statistically optimized formulation (F3) released 95.11 ± 1.43% drug for 12 h followed K-Peppas drug release kinetics indicating release of drug by diffusion and erosion mechanism. Evaluation of the optimized formulation in vivo in human volunteers showed that the GFT was buoyant in gastric fluid and that its gastric residence time was enhanced. Pharmacokinetics studies carried out revealed significant (P < 0.05) equivalent Cmax, longer Tmax and higher AUC values for the optimized formula compared to the marketed oral product. From the results obtained it can be concluded that Azelnidipine Gastro retentive tablets with enhanced bioavailability and better release pattern is suitable for more effective treatment compared to marketed conventional tablets.
Collapse
Affiliation(s)
- Swati S Gaikwad
- Department of Pharmaceutical Sciences, R. T. M. Nagpur University, Mahatma Jyotiba Fuley Educational Campus, Amravati Road, Nagpur 440033, Maharashtra, India.
| | - Jasmine G Avari
- Department of Pharmaceutical Sciences, R. T. M. Nagpur University, Mahatma Jyotiba Fuley Educational Campus, Amravati Road, Nagpur 440033, Maharashtra, India
| |
Collapse
|
14
|
Formulation and evaluation of gastric-floating controlled release tablets of Ginkgolides. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|