1
|
Okafor NI. Microencapsulation Techniques in HIV Pediatric Formulations: Advances and Future Outlook. Adv Pharmacol Pharm Sci 2024; 2024:5081655. [PMID: 39421019 PMCID: PMC11483870 DOI: 10.1155/2024/5081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 10/19/2024] Open
Abstract
The treatment of human immunodeficiency virus (HIV) in children has persistently been complex and tedious on a global scale. This is because adult and pediatric HIV treatments follow a similar therapeutic approach. Due to the dearth of clinically licensed pediatric antiretroviral drug (ARVD) therapy, children with HIV worldwide are prescribed unlicensed drugs each year. This has triggered likelihood of poor drug adherence, therapeutic failure, and even adverse reactions brought on by a variety of factors, including pill size and quantity, which is the main cause of swallowing difficulties, repeated administration of these various ARVDs, many of which have poor solubility and cause severe side effects in children, and unpalatability of the drug, which is one of the criteria for pediatric formulations. Thus, there is a necessity for investigation into several advanced microencapsulation techniques that could curb these challenges. Microencapsulation techniques have explored in drug delivery for encapsulation and manufacture of different nanoparticles that have shown significant potential in mitigating and surmounting different constraints, such as taste masking, enhanced drug solubility and bioavailability, and production of micronized fine powders for treatment of varying diseases. Nevertheless, the usage of these technologies in HIV pediatric formulations has garnered relatively little attention. Thus, this review has paid a keen interest in examining several microencapsulation strategies for potential utilization in the development of HIV pediatric formulations.
Collapse
Affiliation(s)
- Nnamdi Ikemefuna Okafor
- Department of Pharmaceutical Sciences, University of the Western Cape, Robert Sobukwe Drive, Bellville, Cape Town, South Africa
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Azeez S, Sathiyaseelan A, Venkatesan K, Wang MH. Fabrication of Mupirocin-Loaded PEGylated Chitosan Nanoparticulate Films for Enhanced Wound Healing. Int J Mol Sci 2024; 25:9188. [PMID: 39273137 PMCID: PMC11394824 DOI: 10.3390/ijms25179188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Chitosan-based biomaterials are being investigated for their unique properties that support skin regeneration and wound healing. This study focused on the preparation and characterization of a mupirocin (Mup)-loaded PEGylated chitosan (CS-PEG) nanoparticulate film (NF) [CBNF]. The CBNF was characterized using FTIR spectroscopy and SEM analysis. The results demonstrated that CBNF was successfully incorporated into the composites, as shown by functional group modification through FTIR analysis. Additionally, the SEM micrograph revealed the deposition of nanoparticles (<200 nm) on the surface of transparent CBNF. The film has higher water absorption (≥1700%) and moderate water retention ability within 6 h. Furthermore, histological findings showed significant development, with re-epithelialization and granulation of tissues after 19 days, indicating the healing efficiency of CNBF. These results suggest that drug-loaded films could be an effective carrier and delivery agent for Mup-like anti-inflammatory drugs.
Collapse
Affiliation(s)
- Shajahan Azeez
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, India
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Puducherry Campus, Puducherry 607402, India
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kaviyarasan Venkatesan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, India
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Almurisi SH, Mohammed A, Qassem F, Jehad H, Jassim A, Al-Japairai K, Sammour RMF. Development and In Vitro Evaluation of Aceclofenac Buccal Film. Curr Drug Discov Technol 2024; 21:46-55. [PMID: 37807409 DOI: 10.2174/0115701638262447230920061222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/05/2023] [Accepted: 08/13/2023] [Indexed: 10/10/2023]
Abstract
AIM This study aimed to formulate and characterize aceclofenac buccal film formulations made of different polymers and evaluate the effects of polymer type on buccal film properties. MATERIALS AND METHODS Five polymer types, namely hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose (SCMC), polyvinyl alcohol (PVA), Eudragit S100, and Eudragit SR100, were used to prepare aceclofenac buccal film formulation either separately or combined by solvent-casting method. These formulations were evaluated in terms of physical appearance, folding test, film weight and thickness, drug content, percentage of elongation, moisture uptake, water vapor permeability, and in vitro drug release. RESULTS The addition of Eudragit polymer in most of the produced buccal films was unacceptable with low folding endurance. However, the dissolution profile of buccal films made from PVA and Eudragit SR100 provided a controlled drug release profile. CONCLUSION Buccal films can be formulated using different polymers either individually or in combination to obtain the drug release profile required to achieve a desired treatment goal. Furthermore, the property of the buccal films depends on the type and concentration of the polymer used.
Collapse
Affiliation(s)
- Samah Hamed Almurisi
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Ayah Mohammed
- Department of Pharmaceutics, Dubai Pharmacy College for Girls, Dubai, UAE
| | - Farah Qassem
- Department of Pharmaceutics, Dubai Pharmacy College for Girls, Dubai, UAE
| | - Heba Jehad
- Department of Pharmaceutics, Dubai Pharmacy College for Girls, Dubai, UAE
| | - Asma Jassim
- Department of Pharmaceutics, Dubai Pharmacy College for Girls, Dubai, UAE
| | - Khater Al-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300, Malaysia
| | - Rana M F Sammour
- Department of Pharmaceutics, Dubai Pharmacy College for Girls, Dubai, UAE
| |
Collapse
|
4
|
AlMulhim FM, Nair AB, Aldhubiab B, Shah H, Shah J, Mewada V, Sreeharsha N, Jacob S. Design, Development, Evaluation, and In Vivo Performance of Buccal Films Embedded with Paliperidone-Loaded Nanostructured Lipid Carriers. Pharmaceutics 2023; 15:2530. [PMID: 38004510 PMCID: PMC10674218 DOI: 10.3390/pharmaceutics15112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
The therapeutic effectiveness of paliperidone in the treatment of schizophrenia has been limited by its poor oral bioavailability; hence, an alternative route could be appropriate. This study investigates the feasibility of developing a buccal film impregnated with paliperidone-loaded nanostructured lipid carriers (NLCs) and assesses the potential to enhance its bioavailability. Box-Behnken-based design optimization of NLCs was performed by examining the particles' physical characteristics. The polymeric film was used to load optimized NLCs, which were then assessed for their pharmaceutical properties, permeability, and pharmacokinetics. The optimization outcomes indicated that selected formulation variables had a considerable (p < 0.05) impact on responses such as particle size, entrapment efficiency, and % drug release. Desired characteristics such as a negative charge, higher entrapment efficiency, and nanoparticles with ideal size distribution were shown by optimized NLC dispersions. The developed film demonstrated excellent physico-mechanical properties, appropriate texture, good drug excipient compatibility (chemically stable formulation), and amorphous drug nature. A sustained Weibull model drug release (p < 0.0005) and superior flux (~5-fold higher, p < 0.005) were seen in NLC-loaded film compared to plain-drug-loaded film. The pharmacokinetics profile in rabbits supports the goal of buccal therapy as evidenced by significantly higher AUC0-12 (p < 0.0001) and greater relative bioavailability (236%) than the control. These results support the conclusion that paliperidone-loaded NLC buccal film has the potential to be an alternate therapy for its effective administration in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Fahad Mohammed AlMulhim
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (B.A.); (N.S.)
- Department of Pharmacy Services, Johns Hopkins Aramco Health Care (JHAH), Dharan 34464, Saudi Arabia
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (B.A.); (N.S.)
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (B.A.); (N.S.)
| | - Hiral Shah
- Department of Pharmaceutics, Parul College of Pharmacy and Research, Parul University, Ahmedabad 380058, India;
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India; (J.S.); (V.M.)
| | - Vivek Mewada
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India; (J.S.); (V.M.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (B.A.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| |
Collapse
|
5
|
Dessai AA, Kantak MN, DCruz CEM, Kumar L, Bhide PJ, Shirodkar RK. Formulation and Characterization of Nanoparticulate Drug Carrier System for Lacidipine. Assay Drug Dev Technol 2023; 21:309-324. [PMID: 37831909 DOI: 10.1089/adt.2023.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Lacidipine, a calcium channel antagonist, is primarily used to treat hypertension. It is classified as a Biopharmaceutics Classification System Class II drug and exhibits an oral bioavailability of 10% due to its extensive hepatic first-pass metabolism. This research study focused on formulating lacidipine-loaded cubosomal nanovesicles developed into rapidly dissolving oral films as an alternative to overcome the downsides faced by conventional antihypertensive therapy. Lacidipine-loaded cubosomes were prepared utilizing a top-down technique using lipid and surfactant and were further developed into fast dissolving oral films. Box-Behnken design was used for the optimization of process variables to achieve minimum particle size and greater entrapment efficiency of the nanovesicles, and response data were statistically evaluated. The optimized cubosomal dispersions upon characterization reported particle size within nanorange (116.8-341 nm) and an entrapment efficiency of 88.15%-97.1%, with 91.72% of total drug content. Morphological studies revealed uniformly dispersed vesicles with cubic to spherical shape. Oral rapidly dissolving films, after evaluation, were reported to have transparent to opaque appearance with a highly porous nature, which was confirmed by scanning electron microscopic imaging and displayed uniformity in weight and thickness and reported optimum mechanical strength and considerable flexibility, with disintegration time of 37.67 ± 3.68 s and exhibited 91.44% ± 1.65% in vitro drug release after 6 min. Short-term stability studies conducted on films at 25°C ± 2°C and 60% ± 5% relative humidity for 3 months demonstrated no significant variation in morphological and mechanical properties. Therefore, lacidipine-loaded cubosomal rapid dissolving oral films may be a promising formulation approach for the management of hypertension.
Collapse
Affiliation(s)
| | | | | | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | | | | |
Collapse
|
6
|
Wang S, Liu L, Meng S, Wang Y, Liu D, Gao Z, Zuo A, Guo J. A method for evaluating drug penetration and absorption through isolated buccal mucosa with highly accuracy and reproducibility. Drug Deliv Transl Res 2022; 12:2875-2892. [PMID: 35349106 DOI: 10.1007/s13346-022-01151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Abstract
The purpose of the project is to establish a standardized operation method of the in vitro permeability model to maximize mucosal integrity and viability. The model drug lidocaine permeability, 20 kDa fluorescein isothiocyanate-dextran, H&E staining, and mucosal viability were used as evaluation indicators. Firstly, the buccal mucosae of rats, rabbits, dogs, porcine, and humans were analyzed by H&E staining and morphometric analysis to compare the differences. Then, we studied a series of operation methods of isolated mucosa. The buccal mucosae were found to retain their integrity in Kreb's bicarbonate ringer solution at 4 °C for 36 h. Under the long-term storage method with program cooling, freezing at -80 °C, thawing at 37 °C, and using cryoprotectants of 20% glycerol and 20% trehalose, mucosal integrity and biological viability can be maintained for 21 days. The heat separation method was used to prepare a permeability model with a mucosal thickness of 500 μm, which was considered to be the optimal operation. In summary, this study provided an experimental basis for the selection and operation of in vitro penetration models, standardized the research process of isolated mucosa, and improved the accuracy of permeability studies.
Collapse
Affiliation(s)
- Shuangqing Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lei Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Saige Meng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yuling Wang
- Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Daofeng Liu
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, 257000, Shandong Province, China
| | - Zhonggao Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China. .,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Along Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Jianpeng Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
7
|
Srivastava N, Aslam S. Recent Advancements and Patents on Buccal Drug Delivery Systems: A Comprehensive Review. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:308-325. [PMID: 34126916 DOI: 10.2174/1872210515666210609145144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The major requirement for a dosage form to be successful is its ability to penetrate the site of application and the bioavailability of the drug released from the dosage form. The buccal drug delivery is an influential route to deliver the drug into the body. Here, in this context, various novel approaches that include lipoidal carriers like ethosomes, transferosomes, niosomes etc. and electrospun nanofibers are discussed, with respect to buccal drug delivery. These carriers can be easily incorporated into buccal dosage forms like patches and gels that are responsible for increased permeation across the buccal epithelium. The in vivo methods of evaluation on animal models are conscribed here. The novel biocarriers of lipoidal and non-lipoidal nature can be utilized by loading the drug into them, which are helpful in preventing drug degradation and other drawbacks as compared to conventional formulations. The globally patented buccal formulations give us a wide context in literature about the patents filed and granted in the recent years. When it comes to patient compliance, age is an issue, which is also solved by the buccal route. The pediatric buccal formulations are researched for the customization to be delivered to children. Diseases like mouth ulcers, oral cancer, Parkinson's disease, aphthous stomatitis etc. have been successfully treated through the buccal route, which infers that the buccal drug delivery system is an effective and emerging area for formulation and development in the field of pharmaceutics.
Collapse
Affiliation(s)
- Nimisha Srivastava
- Department of Pharmaceutics, Faculty of Pharmacy, Amity University Uttar Pradesh, Lucknow, India
| | - Sahifa Aslam
- Department of Pharmaceutics, Faculty of Pharmacy, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
8
|
He M, Zhu L, Yang N, Li H, Yang Q. Recent advances of oral film as platform for drug delivery. Int J Pharm 2021; 604:120759. [PMID: 34098053 DOI: 10.1016/j.ijpharm.2021.120759] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
Orally drug delivery film has received extensive interest duo to a distinct set of its advantageous properties compared to the traditional orally administered dosages, including faster rate of drug absorption, higher bioavailability and better patient compliance for children and elders with swallowing deficiencies. In particular, its potential capacity of delivering proteins and peptides has further attracted great attention. Lately, tremendous advances have been made in designing and developing both novel mucoadhesive films and orodispersible films to fulfill specific accomplishments of drug delivery. This review aims to summarize those newly developed oral films, discussing their formulation strategies, manufacturing methods as well as advantages and limitations thereof. Conclusions and future perspectives are also provided in brief.
Collapse
Affiliation(s)
- Mengning He
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lingmeng Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ni Yang
- School of Mathematics, University of Bristol, Bristol BS8 1QU, UK
| | - Huijie Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Ningbo Wesdon Powder Pharma Coatings Co. Ltd., Ningbo 315042, China.
| |
Collapse
|
9
|
Mucoadhesion and Mechanical Assessment of Oral Films. Eur J Pharm Sci 2021; 159:105727. [DOI: 10.1016/j.ejps.2021.105727] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
|
10
|
Wang S, Zuo A, Guo J. Types and evaluation of in vitro penetration models for buccal mucosal delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|