1
|
Paul P, Chacko L, Dua TK, Chakraborty P, Paul U, Phulchand V, Jha NK, Jha SK, Kandimalla R, Dewanjee S. Nanomedicines for the management of diabetic nephropathy: present progress and prospects. Front Endocrinol (Lausanne) 2023; 14:1236686. [PMID: 38027185 PMCID: PMC10656621 DOI: 10.3389/fendo.2023.1236686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular consequence of diabetes mellitus (DM), posing an encumbrance to public health worldwide. Control over the onset and progress of DN depend heavily on early detection and effective treatment. DN is a major contributor to end-stage renal disease, and a complete cure is yet to be achieved with currently available options. Though some therapeutic molecules have exhibited promise in treating DN complications, their poor solubility profile, low bioavailability, poor permeation, high therapeutic dose and associated toxicity, and low patient compliance apprehend their clinical usefulness. Recent research has indicated nano-systems as potential theranostic platforms displaying futuristic promise in the diagnosis and treatment of DN. Early and accurate diagnosis, site-specific delivery and retention by virtue of ligand conjugation, and improved pharmacokinetic profile are amongst the major advantages of nano-platforms, defining their superiority. Thus, the emergence of nanoparticles has offered fresh approaches to the possible diagnostic and therapeutic strategies regarding DN. The present review corroborates an updated overview of different types of nanocarriers regarding potential approaches for the diagnosis and therapy of DN.
Collapse
Affiliation(s)
- Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, Rockville, MD, United States
| | - Tarun K. Dua
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Udita Paul
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Vishwakarma Vishal Phulchand
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Niraj K. Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saurabh K. Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
- Department of Applied Biology, Indian Institute of Technology, Council of Scientific & Industrial Research (CSIR), Hyderabad, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
2
|
Zhang T, Xu X, Pan Y, Yang H, Han J, Liu J, Liu W. Specific surface modification of liposomes for gut targeting of food bioactive agents. Compr Rev Food Sci Food Saf 2023; 22:3685-3706. [PMID: 37548603 DOI: 10.1111/1541-4337.13224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Liposomes have become a research hotspot in recent years as food delivery systems with attractive properties, including the bilayer structure assembled like the cell membrane, reducing the side-effect and improving environmental stability of cargos, controlling release, extending duration of functional ingredients, and high biodegradable and biocompatible abilities in the body. However, the conventional liposomes lack stability during storage and are weak in targeted absorption in the gastrointestinal track. At present, surface modification has been approved to be an effective platform to shield these barricades and help liposomes deliver the agents safely and effectively to the ideal site. In this review, the gastrointestinal stability of conventional liposomes, cargo release models from liposomes, and the biological fate of the core materials after release were emphasized. Then, the strategies in both physical and chemical perspectives to improve the stability and utilization of liposomes in the gastrointestinal tract, and the emerging approaches for improving gut targeting by specifically modified liposomes and the intestinal receptors relative to liposomes/cargos absorption were highlighted. Last but not the least, the safety, challenges, and opportunities for the improvement of liposomal bioavailability were also discussed to inspire new applications of liposomes as oral carriers.
Collapse
Affiliation(s)
- Tingting Zhang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiankang Xu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yujie Pan
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hui Yang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Weilin Liu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
3
|
Pisani S, Chiesa E, Genta I, Dorati R, Gregorini M, Grignano MA, Ramus M, Ceccarelli G, Croce S, Valsecchi C, Monti M, Rampino T, Conti B. Liposome Formulation and In Vitro Testing in Non-Physiological Conditions Addressed to Ex Vivo Kidney Perfusion. Int J Mol Sci 2022; 23:ijms23147999. [PMID: 35887348 PMCID: PMC9324182 DOI: 10.3390/ijms23147999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 02/01/2023] Open
Abstract
This work focuses on formulating liposomes to be used in isolated kidney dynamic machine perfusion in hypothermic conditions as drug delivery systems to improve preservation of transplantable organs. The need mainly arises from use of kidneys from marginal donors for transplantation that are more exposed to ischemic/reperfusion injury compared to those from standard donors. Two liposome preparation techniques, thin film hydration and microfluidic techniques, are explored for formulating liposomes loaded with two model proteins, myoglobin and bovine serum albumin. The protein-loaded liposomes are characterized for their size by DLS and morphology by TEM. Protein releases from the liposomes are tested in PERF-GEN perfusion fluid, 4 °C, and compared to the in vitro protein release in PBS, 37 °C. Fluorescent liposome uptake is analyzed by fluorescent microscope in vitro on epithelial tubular renal cell cultures and ex vivo on isolated pig kidney in hypothermic perfusion conditions. The results show that microfluidics are a superior technique for obtaining reproducible spherical liposomes with suitable size below 200 nm. Protein encapsulation efficiency is affected by its molecular weight and isoelectric point. Lowering incubation temperature slows down the proteins release; the perfusion fluid significantly affects the release of proteins sensitive to ionic media (such as BSA). Liposomes are taken up by epithelial tubular renal cells in two hours’ incubation time.
Collapse
Affiliation(s)
- Silvia Pisani
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (E.C.); (I.G.); (R.D.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (E.C.); (I.G.); (R.D.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (E.C.); (I.G.); (R.D.)
| | - Marilena Gregorini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Maria Antonietta Grignano
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.A.G.); (M.R.); (T.R.)
| | - Marina Ramus
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.A.G.); (M.R.); (T.R.)
| | - Gabriele Ceccarelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy;
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Immunology & Transplantation Laboratory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (C.V.)
| | - Stefania Croce
- Immunology & Transplantation Laboratory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (C.V.)
| | - Chiara Valsecchi
- Immunology & Transplantation Laboratory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (C.V.)
| | - Manuela Monti
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit University of Pavia, Biotechnology Laboratories Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Teresa Rampino
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.A.G.); (M.R.); (T.R.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (E.C.); (I.G.); (R.D.)
- Correspondence: ; Tel.: +39-0382987378
| |
Collapse
|
4
|
Lin B, Ma YY, Wang JW. Nano-Technological Approaches for Targeting Kidney Diseases With Focus on Diabetic Nephropathy: Recent Progress, and Future Perspectives. Front Bioeng Biotechnol 2022; 10:870049. [PMID: 35646840 PMCID: PMC9136139 DOI: 10.3389/fbioe.2022.870049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide. With the rising prevalence of diabetes, the occurrence of DN is likely to hit pandemic proportions. The current treatment strategies employed for DN focus on the management of blood pressure, glycemia, and cholesterol while neglecting DN’s molecular progression mechanism. For many theranostic uses, nano-technological techniques have evolved in biomedical studies. Several nanotechnologically based theranostics have been devised that can be tagged with targeting moieties for both drug administration and/or imaging systems and are being studied to identify various clinical conditions. The molecular mechanisms involved in DN are discussed in this review to assist in understanding its onset and progression pattern. We have also discussed emerging strategies for establishing a nanomedicine-based platform for DN-targeted drug delivery to increase drug’s efficacy and safety, as well as their reported applications.
Collapse
Affiliation(s)
- Bo Lin
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ying-Yu Ma
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Ying-Yu Ma, ; Jun-Wei Wang,
| | - Jun-Wei Wang
- Emergency Department, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
- *Correspondence: Ying-Yu Ma, ; Jun-Wei Wang,
| |
Collapse
|
5
|
Chen J, Lin Y, Wu M, Li C, Zhang Y, Chen D, Cheng Y. Drug-Free Liposomes Containing Mannosylated Ligand for Liver-Targeting: Synthetic Optimization, Liposomal Preparation, and Bioactivity Evaluation. J Biomed Nanotechnol 2021; 17:2455-2465. [PMID: 34974868 DOI: 10.1166/jbn.2021.3204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This research was performed to optimize the enzymatic synthesis of mannosylated ligand with which to prepare mannosy-lated liposomes and investigate their bioactivity. Based on single-factor studies, lipase dose, substrate molar ratio (diester lauric diacid-cholesterol to mannose) and temperature were identified as significant parameters, and optimal reaction conditions were determined through response surface methodology (RSM) with central composite design. The optimum operating parameters, 61.23 mg of lipase, a substrate molar ratio of 5.36, and 56.64 °C temperature offered a predicted yield (71.11%) which was consistent with the actual yield (69.08%). Drug-free mannosylated liposomes were prepared film-dispersion. The characterizations of these liposomes showed that mannosylated liposomes were well-dispersible spherical particles with an average particle size of 142.3 nm, the polydispersity index of 0.16, and a zeta potential of -19.8 mV. Pyrogen examination, hemolytic studies and cytotoxicity assays revealed no substantial safety concern for drug-free mannosylated liposomes. Cellular uptake efficiency of mannosylated liposomes by HepG2 cells was significantly higher than that of unmodified liposomes, demonstrating that mannosylated ligands have a positive effect on liver targeting. Overall, mannosylated liposomes could be active drug delivery system for combatting the therapy of hepatic diseases.
Collapse
Affiliation(s)
- Jing Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Yuan Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Min Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Chuangnan Li
- Neurosurgery Department, Jiangmen Wuyi Hosipital of TCM, Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, 529020, China
| | - Yimin Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Dongpeng Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Yi Cheng
- School of Chinese Material Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
6
|
Abstract
The kidneys are vital organs performing several essential functions. Their primary function is the filtration of blood and the removal of metabolic waste products as well as fluid homeostasis. Renal filtration is the main pathway for drug removal, highlighting the importance of this organ to the growing field of nanomedicine. The kidneys (i) have a key role in the transport and clearance of nanoparticles (NPs), (ii) are exposed to potential NPs’ toxicity, and (iii) are the targets of diseases that nanomedicine can study, detect, and treat. In this review, we aim to summarize the latest research on kidney-nanoparticle interaction. We first give a brief overview of the kidney’s anatomy and renal filtration, describe how nanoparticle characteristics influence their renal clearance, and the approaches taken to image and treat the kidney, including drug delivery and tissue engineering. Finally, we discuss the future and some of the challenges faced by nanomedicine.
Collapse
|