1
|
Patel D, Solanki J, Kher MM, Azagury A. A Review: Surface Engineering of Lipid-Based Drug Delivery Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401990. [PMID: 39004869 DOI: 10.1002/smll.202401990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/19/2024] [Indexed: 07/16/2024]
Abstract
This review explores the evolution of lipid-based nanoparticles (LBNPs) for drug delivery (DD). Herein, LBNPs are classified into liposomes and cell membrane-based nanoparticles (CMNPs), each with unique advantages and challenges. Conventional LBNPs possess drawbacks such as poor targeting, quick clearance, and limited biocompatibility. One of the possible alternatives to overcome these challenges is surface modification of nanoparticles (NPs) with materials such as polyethylene glycol (PEG), aptamers, antibody fragments, peptides, CD44, hyaluronic acid, folic acid, palmitic acid, and lactoferrin. Thus, the main focus of this review will be on the different surface modifications that enable LBNPs to have beneficial properties for DD, such as enhancing mass transport properties, immune evasion, improved stability, and targeting. Moreover, various CMNPs are explored used for DD derived from cells such as red blood cells (RBCs), platelets, leukocytes, cancer cells, and stem cells, highlighting their unique natural properties (e.g., biocompatibility and ability to evade the immune system). This discussion extends to the biomimicking of hybrid NPs accomplished through the surface coating of synthetic (mainly polymeric) NPs with different cell membranes. This review aims to provide a comprehensive resource for researchers on recent advances in the field of surface modification of LBNPs and CMNPs. Overall, this review provides valuable insights into the dynamic field of lipid-based DD systems.
Collapse
Affiliation(s)
- Dhaval Patel
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Jyoti Solanki
- Post Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388120, India
| | - Mafatlal M Kher
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Aharon Azagury
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| |
Collapse
|
2
|
Combined Dopamine and Grape Seed Extract-Loaded Solid Lipid Nanoparticles: Nasal Mucosa Permeation, and Uptake by Olfactory Ensheathing Cells and Neuronal SH-SY5Y Cells. Pharmaceutics 2023; 15:pharmaceutics15030881. [PMID: 36986742 PMCID: PMC10059967 DOI: 10.3390/pharmaceutics15030881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
We have already formulated solid lipid nanoparticles (SLNs) in which the combination of the neurotransmitter dopamine (DA) and the antioxidant grape-seed-derived proanthocyanidins (grape seed extract, GSE) was supposed to be favorable for Parkinson’s disease (PD) treatment. In fact, GSE supply would reduce the PD-related oxidative stress in a synergic effect with DA. Herein, two different methods of DA/GSE loading were studied, namely, coadministration in the aqueous phase of DA and GSE, and the other approach consisting of a physical adsorption of GSE onto preformed DA containing SLNs. Mean diameter of DA coencapsulating GSE SLNs was 187 ± 4 nm vs. 287 ± 15 nm of GSE adsorbing DA-SLNs. TEM microphotographs evidenced low-contrast spheroidal particles, irrespective of the SLN type. Moreover, Franz diffusion cell experiments confirmed the permeation of DA from both SLNs through the porcine nasal mucosa. Furthermore, fluorescent SLNs also underwent cell-uptake studies by using flow cytometry in olfactory ensheathing cells and neuronal SH-SY5Y cells, evidencing higher uptake when GSE was coencapsulated rather than adsorbed onto the particles.
Collapse
|
3
|
Shelash Al-Hawary SI, Abdalkareem Jasim S, M Kadhim M, Jaafar Saadoon S, Ahmad I, Romero Parra RM, Hasan Hammoodi S, Abulkassim R, M Hameed N, K Alkhafaje W, Mustafa YF, Javed Ansari M. Curcumin in the treatment of liver cancer: From mechanisms of action to nanoformulations. Phytother Res 2023; 37:1624-1639. [PMID: 36883769 DOI: 10.1002/ptr.7757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 03/09/2023]
Abstract
Liver cancer is the sixth most prevalent cancer and ranks third in cancer-related death, after lung and colorectal cancer. Various natural products have been discovered as alternatives to conventional cancer therapy strategies, including radiotherapy, chemotherapy, and surgery. Curcumin (CUR) with antiinflammatory, antioxidant, and antitumor activities has been associated with therapeutic benefits against various cancers. It can regulate multiple signaling pathways, such as PI3K/Akt, Wnt/β-catenin, JAK/STAT, p53, MAPKs, and NF-ĸB, which are involved in cancer cell proliferation, metastasis, apoptosis, angiogenesis, and autophagy. Due to its rapid metabolism, poor oral bioavailability, and low solubility in water, CUR application in clinical practices is restricted. To overcome these limitations, nanotechnology-based delivery systems have been applied to use CUR nanoformulations with added benefits, such as reducing toxicity, improving cellular uptake, and targeting tumor sites. Besides the anticancer activities of CUR in combating various cancers, especially liver cancer, here we focused on the CUR nanoformulations, such as micelles, liposomes, polymeric, metal, and solid lipid nanoparticles, and others, in the treatment of liver cancer.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-Anbar-Ramadi, Iraq
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq.,Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | | | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Baghdad, Iraq
| | - Waleed K Alkhafaje
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| |
Collapse
|
4
|
The Encapsulation of Citicoline within Solid Lipid Nanoparticles Enhances Its Capability to Counteract the 6-Hydroxydopamine-Induced Cytotoxicity in Human Neuroblastoma SH-SY5Y Cells. Pharmaceutics 2022; 14:pharmaceutics14091827. [PMID: 36145575 PMCID: PMC9506317 DOI: 10.3390/pharmaceutics14091827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Backgrond: Considering the positive effects of citicoline (CIT) in the management of some neurodegenerative diseases, the aim of this work was to develop CIT-Loaded Solid Lipid Nanoparticles (CIT-SLNs) for enhancing the therapeutic use of CIT in parkinsonian syndrome; (2) Methods: CIT-SLNs were prepared by the melt homogenization method using the self-emulsifying lipid Gelucire® 50/13 as lipid matrix. Solid-state features on CIT-SLNs were obtained with FT-IR, thermal analysis (DSC) and X-ray powder diffraction (XRPD) studies. (3) Results: CIT-SLNs showed a mean diameter of 201 nm, −2.20 mV as zeta potential and a high percentage of entrapped CIT. DSC and XRPD analyses evidenced a greater amorphous state of CIT in CIT-SLNs. On confocal microscopy, fluorescent SLNs replacing unlabeled CIT-SLNs released the dye selectively in the cytoplasm. Biological evaluation showed that pre-treatment of SH-SY5Y dopaminergic cells with CIT-SLNs (50 µM) before the addition of 40 µM 6-hydroxydopamine (6-OHDA) to mimic Parkinson’s disease’s degenerative pathways counteracts the cytotoxic effects induced by the neurotoxin, increasing cell viability with the consistent maintenance of both nuclear and cell morphology. In contrast, pre-treatment with CIT 50 and 60 µM or plain SLNs for 2 h followed by 6-OHDA (40 µM) did not significantly influence cell viability. (4) Conclusions: These data suggest an enhanced protection exerted by CIT-SLNs with respect to free CIT and prompt further investigation of possible molecular mechanisms that underlie this difference.
Collapse
|
5
|
Loo HL, Goh BH, Lee LH, Chuah LH. Application of chitosan nanoparticles in skin wound healing. Asian J Pharm Sci 2022; 17:299-332. [PMID: 35782330 PMCID: PMC9237591 DOI: 10.1016/j.ajps.2022.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
The rising prevalence of impaired wound healing and the consequential healthcare burdens have gained increased attention over recent years. This has prompted research into the development of novel wound dressings with augmented wound healing functions. Nanoparticle (NP)-based delivery systems have become attractive candidates in constructing such wound dressings due to their various favourable attributes. The non-toxicity, biocompatibility and bioactivity of chitosan (CS)-based NPs make them ideal candidates for wound applications. This review focusses on the application of CS-based NP systems for use in wound treatment. An overview of the wound healing process was presented, followed by discussion on the properties and suitability of CS and its NPs in wound healing. The wound healing mechanisms exerted by CS-based NPs were then critically analysed and discussed in sections, namely haemostasis, infection prevention, inflammatory response, oxidative stress, angiogenesis, collagen deposition, and wound closure time. The results of the studies were thoroughly reviewed, and contradicting findings were identified and discussed. Based on the literature, the gap in research and future prospects in this research area were identified and highlighted. Current evidence shows that CS-based NPs possess superior wound healing effects either used on their own, or as drug delivery vehicles to encapsulate wound healing agents. It is concluded that great opportunities and potentials exist surrounding the use of CSNPs in wound healing.
Collapse
|
6
|
Alves GL, Teixeira FV, da Rocha PBR, Krawczyk-Santos AP, Andrade LM, Cunha-Filho M, Marreto RN, Taveira SF. Preformulation and characterization of raloxifene-loaded lipid nanoparticles for transdermal administration. Drug Deliv Transl Res 2022; 12:526-537. [PMID: 33682031 DOI: 10.1007/s13346-021-00949-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 01/20/2023]
Abstract
Transdermal administration of raloxifene hydrochloride (RLX)-loaded nanostructured lipid carriers (NLCs) has been proposed to circumvent its low oral bioavailability (2%). Preformulation studies were carried out to evaluate drug-excipient compatibility of various adjuvants commonly used for NLC preparation (waxes, cholesterol, compritol, gelucire, span 60, span 80, span 85, tween 80, poloxamer 188, oleic acid, caprylic/capric triglyceride, and castor oil). It was used differential scanning calorimetry (DSC), isothermal stress testing (IST), and solubility studies. The most promising excipients were chosen for NLC obtention, and full characterization was done, including in vitro skin permeation. DSC curves suggested drug-excipient interaction among some compounds, and the IST study showed incompatibility of RLX with waxes, compritol, cholesterol, span 60, and poloxamer 188. Solubility studies helped select gelucire, caprylic/capric triglyceride, span 80, and tween 80 for NLC production. Twelve NLCs were obtained (NLC1 to NLC12), but NLC7 and NLC8 were the most promising ones. In vitro release studies demonstrated that NLC7 and NLC8 were able to control RLX release (14.74 and 9.07% at 24 h, respectively) compared with the unloaded drug (> 90% at 24 h). Unloaded RLX did not permeate the diffusion cells' receptor medium and showed higher drug skin retention (11-fold) than RLX-loaded NLC. NLC reduced RLX skin retention, favoring drug permeation to deeper skin layers. NLC7 increased drug flux is 2.4-fold. NLC7 is a promising formulation for RLX transdermal drug delivery.
Collapse
Affiliation(s)
- Guilherme L Alves
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO, 74.605-170, Brazil
| | - Fernanda V Teixeira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO, 74.605-170, Brazil
| | - Priscila Bianca Rodrigues da Rocha
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO, 74.605-170, Brazil
| | - Anna Paula Krawczyk-Santos
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO, 74.605-170, Brazil
| | - Lígia Marquez Andrade
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO, 74.605-170, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Ricardo N Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO, 74.605-170, Brazil
| | - Stephânia F Taveira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO, 74.605-170, Brazil.
| |
Collapse
|
7
|
Trapani A, Cometa S, De Giglio E, Corbo F, Cassano R, Di Gioia ML, Trombino S, Hossain MN, Di Gioia S, Trapani G, Conese M. Novel Nanoparticles Based on N, O-Carboxymethyl Chitosan-Dopamine Amide Conjugate for Nose-to-Brain Delivery. Pharmaceutics 2022; 14:pharmaceutics14010147. [PMID: 35057043 PMCID: PMC8780454 DOI: 10.3390/pharmaceutics14010147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
A widely investigated approach to bypass the blood brain barrier is represented by the intranasal delivery of therapeutic agents exploiting the olfactory or trigeminal connections nose-brain. As for Parkinson’s disease (PD), characterized by dopaminergic midbrain neurons degeneration, currently there is no disease modifying therapy. Although several bio-nanomaterials have been evaluated for encapsulation of neurotransmitter dopamine (DA) or dopaminergic drugs in order to restore the DA content in parkinsonian patients, the premature leakage of the therapeutic agent limits this approach. To tackle this drawback, we undertook a study where the active was linked to the polymeric backbone by a covalent bond. Thus, novel nanoparticles (NPs) based on N,O-Carboxymethylchitosan-DA amide conjugate (N,O-CMCS-DA) were prepared by the nanoprecipitation method and characterized from a technological view point, cytotoxicity and uptake by Olfactory Ensheating Cells (OECs). Thermogravimetric analysis showed high chemical stability of N,O-CMCS-DA NPs and X-ray photoelectron spectroscopy evidenced the presence of amide linkages on the NPs surface. MTT test indicated their cytocompatibility with OECs, while cytofluorimetry and fluorescent microscopy revealed the internalization of labelled N,O-CMCS-DA NPs by OECs, that was increased by the presence of mucin. Altogether, these findings seem promising for further development of N,O-CMCS-DA NPs for nose-to-brain delivery application in PD.
Collapse
Affiliation(s)
- Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (G.T.)
- Correspondence: ; Tel.: +39-080-5442114
| | | | - Elvira De Giglio
- Chemistry Department, University of Bari “Aldo Moro”, Via Orabona, 4, 70125 Bari, Italy;
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (G.T.)
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (M.L.D.G.); (S.T.)
| | - Maria Luisa Di Gioia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (M.L.D.G.); (S.T.)
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (M.L.D.G.); (S.T.)
| | - Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.N.H.); (S.D.G.); (M.C.)
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.N.H.); (S.D.G.); (M.C.)
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (G.T.)
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.N.H.); (S.D.G.); (M.C.)
| |
Collapse
|
8
|
Solid Lipid Nanoparticles Administering Antioxidant Grape Seed-Derived Polyphenol Compounds: A Potential Application in Aquaculture. Molecules 2022; 27:molecules27020344. [PMID: 35056658 PMCID: PMC8778215 DOI: 10.3390/molecules27020344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/04/2022] Open
Abstract
The supply of nutrients, such as antioxidant agents, to fish cells still represents a challenge in aquaculture. In this context, we investigated solid lipid nanoparticles (SLN) composed of a combination of Gelucire® 50/13 and Precirol® ATO5 to administer a grape seed extract (GSE) mixture containing several antioxidant compounds. The combination of the two lipids for the SLN formation resulted in colloids exhibiting mean particle sizes in the range 139–283 nm and zeta potential values in the range +25.6–43.4 mV. Raman spectra and X-ray diffraction evidenced structural differences between the free GSE and GSE-loaded SLN, leading to the conclusion that GSE alters the structure of the lipid nanocarriers. From a biological viewpoint, cell lines from gilthead seabream and European sea bass were exposed to different concentrations of GSE-SLN for 24 h. In general, at appropriate concentrations, GSE-SLN increased the viability of the fish cells. Furthermore, regarding the gene expression in those cells, the expression of antioxidant genes was upregulated, whereas the expression of hsp70 and other genes related to the cytoskeleton was downregulated. Hence, an SLN formulation containing Gelucire® 50/13/Precirol® ATO5 and GSE may represent a compelling platform for improving the viability and antioxidant properties of fish cells.
Collapse
|
9
|
Bukhari SZ, Zeth K, Iftikhar M, Rehman M, Usman Munir M, Khan WS, Ihsan A. Supramolecular lipid nanoparticles as delivery carriers for non-invasive cancer theranostics. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100067. [PMID: 34909685 PMCID: PMC8663983 DOI: 10.1016/j.crphar.2021.100067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Nanotheranostics is an emerging frontier of personalized medicine research particularly for cancer, which is the second leading cause of death. Supramolecular aspects in theranostics are quite allured to achieve more regulation and controlled features. Supramolecular nanotheranostics architecture is focused on engineering of modular supramolecular assemblies benefitting from their mutable and stimuli-responsive properties which confer an ultimate potential for the fabrication of unified innovative nanomedicines with controlled features. Amalgamation of supramolecular approaches to nano-based features further equip the potential of designing novel approaches to overcome limitations seen by the conventional theranostic strategies, for curing even the lethal diseases and endowing personalized therapeutics with optimistic prognosis, endorsing their clinical translation. Among many potential nanocarriers for theranostics, lipid nanoparticles (LNPs) have shown various promising advances in theranostics and their formulation can be tailored for several applications. Despite the great advancement in cancer nanotheranostics, there are still many challenges that need to be highlighted to fill the literature gap. For this purpose, herein, we have presented a systematic overview on the subject and proposed LNPs as the potential material to manage cancer via non-invasive approaches by highlighting the use of supramolecular approaches to make them robust for cancer theranostics. We have concluded the review by entailing the future perspectives of lipid nanotheranostics towards clinical translation.
Collapse
Affiliation(s)
- Syeda Zunaira Bukhari
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University Center, DK-4000 Roskilde, Denmark
| | - Maryam Iftikhar
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Mubashar Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Waheed S. Khan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
10
|
Trapani A, De Giglio E, Cometa S, Bonifacio MA, Dazzi L, Di Gioia S, Hossain MN, Pellitteri R, Antimisiaris SG, Conese M. Dopamine-loaded lipid based nanocarriers for intranasal administration of the neurotransmitter: A comparative study. Eur J Pharm Biopharm 2021; 167:189-200. [PMID: 34333085 DOI: 10.1016/j.ejpb.2021.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023]
Abstract
Both dopamine (DA) loaded Solid Lipid Nanoparticles (SLN) and liposomes (Lip), designed for intranasal administration of the neurotransmitter as an innovative Parkinson disease treatment, were already characterized in vitro in some extent by us (Trapani et al., 2018a and Cometa et al., 2020, respectively). Herein, to gain insight into the structure of SLN, X-ray Photoelectron Spectroscopy Analysis was carried out and DA-SLN (SLN 1) were found to exhibit high amounts of the neurotransmitter on the surface, whereas the external side of Glycol Chitosan (GCS) containing SLN (SLN 2) possessed only few amounts. However, SLN 2 were characterized by the highest encapsulation DA efficiency (i.e., 81%). Furthermore, in view of intranasal administration, mucoadhesion tests in vitro were also conducted for SLN and Lip formulations, evidencing high muchoadesive effect exerted by SLN 2. Concerning ex-vivo studies, SLN and Lip were found to be safe for Olfactory Ensheathing Cells and fluorescent SLN 2 were taken up in a dose-dependent manner reaching the 100% of positive cells, while Lip 2 (chitosan-glutathione-coated) were internalised by 70% OECs with six-times more lipid concentration. Hence, SLN 2 formulation containing DA and GCS may constitute interesting formulations for further studies and promising dosage form for non-invasive nose-to-brain neurotransmitter delivery.
Collapse
Affiliation(s)
- Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| | - Elvira De Giglio
- Chemistry Department, University of Bari "Aldo Moro", via Orabona, 4, Bari 70125, Italy
| | | | | | - Laura Dazzi
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato (Cagliari), Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB-CNR), Catania 95126, Italy
| | - Sophia G Antimisiaris
- Laboratory of Pharm. Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio 26504, Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio 26504, Greece
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
11
|
Ashkar A, Sosnik A, Davidovich-Pinhas M. Structured edible lipid-based particle systems for oral drug-delivery. Biotechnol Adv 2021; 54:107789. [PMID: 34186162 DOI: 10.1016/j.biotechadv.2021.107789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022]
Abstract
Oral administration is the most popular and patient-compliant route for drug delivery, though it raises great challenges due to the involvement of the gastro-intestine (GI) system and the drug bioavailability. Drug bioavailability is directly related to its ability to dissolve, transport and/or absorb through the physiological environment. A great number of drugs are characterized with low water solubility due to their hydrophobic nature, thus limiting their oral bioavailability and clinical use. Therefore, new strategies aiming to provide a protective shell through the GI system and improve drug solubility and permeability in the intestine were developed to overcome this limitation. Lipid-based systems have been proposed as good candidates for such a task owing to their hydrophobic nature which allows high drug loading, drug micellization ability during intestinal digestion due to the lipid content, and the vehicle physical protective environment. The use of edible lipids with high biocompatibility paves the bench-to-bedside translation. Four main types of structured lipid-based drug delivery systems differing in the physical state of the lipid phase have been described in the literature, namely emulsions, solid lipid nanoparticles, nanostructured lipid carriers, and oleogel-based particles. The current review provides a comprehensive overview of the different structured edible lipid-based oral delivery systems investigated up to date and emphasizes the contribution of each system component to the delivery performance, and the oral delivery path of lipids.
Collapse
Affiliation(s)
- Areen Ashkar
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Maya Davidovich-Pinhas
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel..
| |
Collapse
|
12
|
Islam N, Irfan M, Hussain T, Mushtaq M, Khan IU, Yousaf AM, Ghori MU, Shahzad Y. Piperine phytosomes for bioavailability enhancement of domperidone. J Liposome Res 2021; 32:172-180. [PMID: 33944662 DOI: 10.1080/08982104.2021.1918153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The markedly low oral bioavailability of domperidone (anti-emetic drug) is associated with rapid first-pass metabolism in the intestine and liver. To counteract such affects, there is a need to devise a strategy to enhance absorption and subsequently bioavailability. Thus, the current study was aimed at synthesizing phytosomes consisting of phosphatidylcholine and piperine (a P-glycoprotein inhibitor). Phytosomes were prepared by salting-out method. The developed phytosomes were extensively characterized for size, zeta potential, polydispersity index, entrapment efficiency (EE %), infra-red spectroscopy, X-ray diffraction, in vitro drug release, ex vivo permeation, in vivo pharmacokinetic and toxicity. The engineered formulations of phytosomes with piperine exhibited a significant improvement in oral bioavailability of domperidone (79.5%) in comparison with the pure drug suspension under the same conditions. Pharmacokinetic parameters such as maximal plasma concentration (Cmax) and the plasma concentration (estimated from area under the curve; AUC) of domperidone have been greatly increased relative to drug alone. The improved drug absorption was attributed to inhibition of P-glycoprotein transporter. The findings of current research work suggest that the optimized phytosomes based drug delivery containing phytochemicals as bioenhancers have the potential to improve bioavailability of poorly bioavailable drugs that are substrate to P-glycoprotein.
Collapse
Affiliation(s)
- Nayyer Islam
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Talib Hussain
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Maria Mushtaq
- Faculty of Pharmaceutical Sciences, University of Sargodha, Sargodha, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Muhammad Usman Ghori
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
13
|
Di Gioia S, Trapani A, Cassano R, Di Gioia ML, Trombino S, Cellamare S, Bolognino I, Hossain MN, Sanna E, Trapani G, Conese M. Nose-to-brain delivery: A comparative study between carboxymethyl chitosan based conjugates of dopamine. Int J Pharm 2021; 599:120453. [PMID: 33675929 DOI: 10.1016/j.ijpharm.2021.120453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 11/25/2022]
Abstract
Herein, the synthesis of a novel polymeric conjugate N,O-CMCS-Dopamine (DA) based on an amide linkage is reported. The performances of this conjugate were compared with those of an analogous N,O-CMCS-DA ester conjugate previously studied (Cassano et al., 2020) to gain insight into their potential utility for Parkinson's disease treatment. The new amide conjugate was synthesized by standard carbodiimide coupling procedure and characterized by FT-IR, 1H NMR spectroscopies and thermal analysis (Differential Scanning Calorimetry). In vitro mucoadhesive studies in simulated nasal fluid (SNF) evidenced high adhesive effect of both ester and amide conjugates. Results demonstrated that the amide conjugate exerted an important role to prevent DA spontaneous autoxidation both under stressed conditions and physiological mimicking ones. MTT test indicated cytocompatibility of the amide conjugate with Olfactory Ensheating Cells (OECs), which were shown by cytofluorimetry to internalize efficiently the conjugate. Overall, among the two conjugates herein studied, the N,O-CMCS-DA amide conjugate seems a promising candidate for improving the delivery of DA by nose-to-brain administration.
Collapse
Affiliation(s)
- Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy.
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy.
| | - Maria Luisa Di Gioia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Saverio Cellamare
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Isabella Bolognino
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Enrico Sanna
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Cagliari, Italy
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
14
|
Trapani A, Guerra L, Corbo F, Castellani S, Sanna E, Capobianco L, Monteduro AG, Manno DE, Mandracchia D, Di Gioia S, Conese M. Cyto/Biocompatibility of Dopamine Combined with the Antioxidant Grape Seed-Derived Polyphenol Compounds in Solid Lipid Nanoparticles. Molecules 2021; 26:916. [PMID: 33572331 PMCID: PMC7916151 DOI: 10.3390/molecules26040916] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/15/2023] Open
Abstract
Background: The loss of nigrostriatal neurons containing dopamine (DA) together with the "mitochondrial dysfunction" in midbrain represent the two main causes related to the symptoms of Parkinson's disease (PD). Hence, the aim of this investigation is to co-administer the missing DA and the antioxidant grape seed-derived proanthocyanidins (grape seed extract, GSE) in order to increase the levels of the neurotransmitter (which is unable to cross the Blood Brain Barrier) and reducing the oxidative stress (OS) related to PD, respectively. Methods: For this purpose, we chose Solid Lipid Nanoparticles (SLN), because they have been already proven to increase DA uptake in the brain. DA-SLN adsorbing GSE (GSE/DA-SLN) were formulated and subjected to physico-chemical characterization, and their cytocompatibility and protection against OS were examined. Results: GSE was found on SLN surface and release studies evidenced the efficiency of GSE in preventing DA autoxidation. Furthermore, SLN showed high mucoadhesive strength and were found not cytotoxic to both primary Olfactory Ensheathing and neuroblastoma SH-SY5Y cells by MTT test. Co-administration of GSE/DA-SLN and the OS-inducing neurotoxin 6-hydroxydopamine (100 μM) resulted in an increase of SH-SY5Y cell viability. Conclusions: Hence, SLN formulations containing DA and GSE may constitute interesting candidates for non-invasive nose-to-brain delivery.
Collapse
Affiliation(s)
- Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Stefano Castellani
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Enrico Sanna
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria, 09042 Monserrato (Cagliari), Italy;
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (A.G.M.); (D.E.M.)
| | - Anna Grazia Monteduro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (A.G.M.); (D.E.M.)
| | - Daniela Erminia Manno
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (A.G.M.); (D.E.M.)
| | - Delia Mandracchia
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| |
Collapse
|