1
|
Gao D, Yan C, Wang Y, Yang H, Liu M, Wang Y, Li C, Li C, Cheng G, Zhang L. Drug-eluting contact lenses: Progress, challenges, and prospects. Biointerphases 2024; 19:040801. [PMID: 38984804 DOI: 10.1116/6.0003612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024] Open
Abstract
Topical ophthalmic solutions (eye drops) are becoming increasingly popular in treating and preventing ocular diseases for their safety, noninvasiveness, and ease of handling. However, the static and dynamic barriers of eyes cause the extremely low bioavailability (<5%) of eye drops, making ocular therapy challenging. Thus, drug-eluting corneal contact lenses (DECLs) have been intensively investigated as a drug delivery device for their attractive properties, such as sustained drug release and improved bioavailability. In order to promote the clinical application of DECLs, multiple aspects, i.e., drug release and penetration, safety, and biocompatibility, of these drug delivery systems were thoroughly examined. In this review, we systematically discussed advances in DECLs, including types of preparation materials, drug-loading strategies, drug release mechanisms, strategies for penetrating ocular barriers, in vitro and in vivo drug delivery and penetration detection, safety, and biocompatibility validation methods, as well as challenges and future perspectives.
Collapse
Affiliation(s)
- Dongdong Gao
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116033, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Chunxiao Yan
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| | - Yong Wang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Heqing Yang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Mengxin Liu
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| | - Yi Wang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | - Chao Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Gang Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lijun Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116033, China
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| |
Collapse
|
2
|
Sanyal S, Ravula V. Mitigation of pesticide-mediated ocular toxicity via nanotechnology-based contact lenses: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46602-46624. [PMID: 37542697 DOI: 10.1007/s11356-023-28904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
The xenobiotic stress exerted by pesticides leads to the deterioration of human and animal health including ocular health. Acute or prolonged exposure to these agricultural toxicants has been implicated in a number of pathological conditions of the eye such as irritation, epiphora or hyper-lacrimation, abrasions on the ocular surface, and decreased visual acuity. The issue is compounded by the fact that tissues of the eye absorb pesticides faster than other organs of the body and are more susceptible to damage as well. However, there is a lacuna in our knowledge regarding the ways by which pesticide exposure-mediated ocular insult might be counteracted. Topical instillation of drugs known to combat the pesticide induced toxicity has been explored to mitigate the detrimental impact of pesticide exposure. However, topical eye drop solutions exhibit very low bioavailability and limited drug residence duration in the tear film decreasing their efficacy. Contact lenses have been explored in this respect to increase bioavailability of ocular drugs, while nanoparticles have lately been utilized to increase drug bioavailability and increase drug residence duration in different tissues. The current review focuses on drug delivery and futuristic aspects of corneal protection from ocular toxicity using contact lenses.
Collapse
Affiliation(s)
- Shalini Sanyal
- Laboratory of Self Assembled Biomaterials and Translational Science, Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bengaluru, 560065, Karnataka, India.
| | - Venkatesh Ravula
- Laboratory of Self Assembled Biomaterials and Translational Science, Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bengaluru, 560065, Karnataka, India
| |
Collapse
|
3
|
Baghban R, Talebnejad MR, Meshksar A, Heydari M, Khalili MR. Recent advancements in nanomaterial-laden contact lenses for diagnosis and treatment of glaucoma, review and update. J Nanobiotechnology 2023; 21:402. [PMID: 37919748 PMCID: PMC10621182 DOI: 10.1186/s12951-023-02166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Despite the existence of numerous eye drops in the market, most of them are not sufficiently effective because of quick clearance and the barriers within the eye. To increase the delivery of the drugs to the eye, various new formulations have been explored in recent decades. These formulations aim to enhance drug retention and penetration, while enabling sustained drug release over extended periods. One such innovative approach is the utilization of contact lenses, which were originally designed for cosmetic purposes and vision correction. Contact lenses have appeared as a promising formulation for ocular drug delivery, as they can increase the bioavailability of drugs in the eye and diminish unwanted side effects. They are specifically appropriate for treating chronic eye conditions, making them an area of interest for researchers in the field of ophthalmology. This review outlines the promising potential of nanomaterial-laden contact lenses for diagnosis and treatment of glaucoma. It classifies therapeutic approaches based on nanomaterial type, summarizes diagnostic advances, discusses improvement of contact lenses properties, covers marketing perspectives, and acknowledges the challenges of these innovative contact lenses for glaucoma management.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Talebnejad
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aidin Meshksar
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Heydari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Khalili
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Bal-Öztürk A, Özcan-Bülbül E, Gültekin HE, Cecen B, Demir E, Zarepour A, Cetinel S, Zarrabi A. Application of Convergent Science and Technology toward Ocular Disease Treatment. Pharmaceuticals (Basel) 2023; 16:445. [PMID: 36986546 PMCID: PMC10053244 DOI: 10.3390/ph16030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Eyes are one of the main critical organs of the body that provide our brain with the most information about the surrounding environment. Disturbance in the activity of this informational organ, resulting from different ocular diseases, could affect the quality of life, so finding appropriate methods for treating ocular disease has attracted lots of attention. This is especially due to the ineffectiveness of the conventional therapeutic method to deliver drugs into the interior parts of the eye, and the also presence of barriers such as tear film, blood-ocular, and blood-retina barriers. Recently, some novel techniques, such as different types of contact lenses, micro and nanoneedles and in situ gels, have been introduced which can overcome the previously mentioned barriers. These novel techniques could enhance the bioavailability of therapeutic components inside the eyes, deliver them to the posterior side of the eyes, release them in a controlled manner, and reduce the side effects of previous methods (such as eye drops). Accordingly, this review paper aims to summarize some of the evidence on the effectiveness of these new techniques for treating ocular disease, their preclinical and clinical progression, current limitations, and future perspectives.
Collapse
Affiliation(s)
- Ayça Bal-Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul 34396, Türkiye
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Istanbul 34396, Türkiye
| | - Ece Özcan-Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul 34396, Türkiye
| | - Hazal Ezgi Gültekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Türkiye
| | - Berivan Cecen
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Türkiye
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Türkiye
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| |
Collapse
|
5
|
Li S, Zhao X, Wang Q, Yu F, Li W, Bai Y, Shen X, Du X, He D, Yuan J. Mechanoresponsive Drug Loading System with Tunable Host-Guest Interactions for Ocular Disease Treatment. ACS Biomater Sci Eng 2022; 8:4850-4862. [PMID: 36214483 DOI: 10.1021/acsbiomaterials.2c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conventional administration of eye drops often requires high dosages and/or repetitive treatments to achieve therapeutic efficacy. This is inefficient and may result in side effects or even toxicity. Although many delivery systems of ophthalmic drugs have been reported, most of them work in a fixed format in which both the type and dose of the loaded drugs cannot be changed upon demand. To overcome this limitation, a hybrid double network hydrogel system composed of methacryloyl gelatin, pluronic F127 diacrylate, and β-cyclodextrin-modified oxidized dextran was developed. The hydrogels presented good mechanical strength and biocompatibility. In vitro assessments demonstrated that the hydrogels loaded with commonly used ophthalmic drugs could sustain the drug release for more than 21 days. This hydrogel system exhibited features of mechanoresponsive drug loading, and the capacity of drug loading could be significantly enhanced by macroscopically mechanical compression. Further in vivo evaluation of the drug delivery capacity showed that a dexamethasone-loaded hydrogel as a fornix insert effectively suppressed upregulation of proangiogenic factors and suture-induced corneal neovascularization in rats. This novel hydrogel system represents a promising drug delivery platform, which could potentially improve the treatments of ocular surface and other diseases.
Collapse
Affiliation(s)
- Saiqun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Xuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Qian Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Fei Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuanren Shen
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyue Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| |
Collapse
|
6
|
Dang H, Dong C, Zhang L. Sustained latanoprost release from PEGylated solid lipid nanoparticle-laden soft contact lens to treat glaucoma. Pharm Dev Technol 2021; 27:127-133. [PMID: 34704874 DOI: 10.1080/10837450.2021.1999471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Contact lens have been proposed as a mean of ocular drug delivery, but the conventional soaking method to load hydrophobic drugs, such as latanoprost shows low drug loading and high burst release with alteration in the critical lens properties. In this paper, a novel latanoprost-loaded PEGylated solid lipid nanoparticles (LP-pSLNs) were developed to increase the latanoprost loading capacity of contact lenses (LP-pSLN-L), while also sustaining ocular drug delivery. The pSLNs were spherical in shape with an average size of 105‒132 nm (nanometer) and a zeta potential ranging from ‒29.1 to ‒26.7 mV (millivolt). The LP-pSLNs led to improved swelling, transmittance, and protein adherence of the lens compared to the non-pegylated SLNs congeners (LP-SLN-L) and conventional soaked lens (LP-SM-L). The LP-SM-L lens showed low drug loading, high burst release, and a short release duration of 24 h. The LP-SLN-L and LP-pSLN-L lenses showed high drug uptake and sustained drug release up to 120 h and 96 h, respectively. The pegylation reduced the size of nanoparticles and improved the drug loading capacity, while the release rate was high in the initial hours. The LP-pSLN-L lens was found to be safe based in histopathological studies. In animal studies, the LP-pSLN-10-L batch showed high drug concentration at all-time points up to 96 h compared to the LP-SM-L and eye drop solution. In conclusion, pSLNs improved the latanoprost loading in the contact lens and showed sustained drug release, and thus can be used as a substitute to eye drop therapy.
Collapse
Affiliation(s)
- Hui Dang
- Department of Ophthalmology, Jinan Second People's Hospital, No. 148 Jingyi Road, Jinan 250001, PR China
| | - Chunyun Dong
- Department of Pharmacy, Rizhao People's Hospital, Rizhao 276800, PR China
| | - Li Zhang
- Department of Pharmacy, Jinan Second People's Hospital, No. 148 Jingyi Road, Jinan 250001, PR China
| |
Collapse
|
7
|
In vitro and in vivo evaluation of ketotifen-gold nanoparticles laden contact lens for controlled drug delivery to manage conjunctivitis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Li Z, Cheng H, Ke L, Liu M, Wang C, Jun Loh X, Li Z, Wu Y. Recent Advances in New Copolymer Hydrogel‐Formed Contact Lenses for Ophthalmic Drug Delivery. CHEMNANOMAT 2021. [DOI: 10.1002/cnma.202100008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhiguo Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 P. R. China
| | - Hongwei Cheng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 P. R. China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 P. R. China
| | - Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 P. R. China
| | - Chen‐Gang Wang
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Yun‐Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 P. R. China
| |
Collapse
|
9
|
Next-generation contact lenses: Towards bioresponsive drug delivery and smart technologies in ocular therapeutics. Eur J Pharm Biopharm 2021; 161:80-99. [DOI: 10.1016/j.ejpb.2021.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/25/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
|
10
|
Zhang T, Zhu T, Wang F, Peng L, Lai M. Ketotifen loaded solid lipid nanoparticles laden contact lens to manage allergic conjunctivitis. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Huang C, Zhang X, Li Y, Yang X. Hyaluronic acid and graphene oxide loaded silicon contact lens for corneal epithelial healing. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:372-384. [PMID: 33058750 DOI: 10.1080/09205063.2020.1836926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hyaluronic acid (HA) eye drop solution is widely used to treat and manage various corneal diseases like keratoconus (after corneal cross-linking) and dry eye syndrome. However, ocular dosage forms like eye drop solution affect the routine life style of patients due to frequent dosing schedule. In this study, HA and reduced graphene oxide (rGO) was directly loaded in the silicon contact lenses (HA-GO-DL) and compared with the conventional soaking method (HA-GO-SM). The contact lenses at lower level of rGO showed permissible swelling and transmittance properties. The water retention property of HA-GO-DL contact lenses was confirmed by water evaporation studies. The flux data of HA-GO-SM contact lenses showed high burst release with 24 h release duration. While, HA-GO-DL lenses confirmed low burst with sustained release up to 96 h. In ocular irritation study, the HA-GO-DL-2 lenses was found to be safe. The HA-GO-DL-2 batch showed high HA-tear fluid concentration (rabbit model) and improvement in the rabbit tear fluid volume (Schirmer strip studies) in comparison to the soaking method (HA-GO-SM-2) and eye drop solution. The study successfully demonstrate the potential of HA-GO loaded contact lenses to improve tear fluid volume to manage various ocular diseases like dry eye syndrome.
Collapse
Affiliation(s)
- Chao Huang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong Province, China
| | - Xin Zhang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong Province, China
| | - Yanchun Li
- Department of Ophthalmology, The Second Affiliated Hospital of Shandong First Medical University, Taian City, Shandong Province, China
| | - Xiaolan Yang
- Department of Fundus Disease, The Second People's Hospital of Jinan, Jinan, Shandong Province, China
| |
Collapse
|
12
|
Ding X, Ben-Shlomo G, Que L. Soft Contact Lens with Embedded Microtubes for Sustained and Self-Adaptive Drug Delivery for Glaucoma Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45789-45795. [PMID: 32960561 DOI: 10.1021/acsami.0c12667] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because of the physiological and anatomical constraints of the eye, ophthalmic drug delivery is challenging. When applied topically, less than 1% of administered ophthalmic drugs reach the aqueous humor. The delivery of a drug within an efficient therapeutic concentration, to the required site of action, for an extended period of time, is complicated. Herein, a novel type of contact lens device, with embedded microtubes as drug containers, is reported. This device can provide a simple, noninvasive, extended drug release up to 45 days with higher bioavailability and lower risk for adverse effects. Another unique feature of the device is the release of drug triggered by stretching of the contact lens, indicating the possibility for achieving a self-adaptive drug release device for treating glaucoma patients.
Collapse
Affiliation(s)
- Xiaoke Ding
- Electrical and Computer Engineering Department, Iowa State University, Ames, Iowa 50011, United States
| | - Gil Ben-Shlomo
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Long Que
- Electrical and Computer Engineering Department, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
13
|
Zhu Y, Sheng Y. RETRACTED: Sustained delivery of epalrestat to the retina using PEGylated solid lipid nanoparticles laden contact lens. Int J Pharm 2020; 587:119688. [PMID: 32717281 DOI: 10.1016/j.ijpharm.2020.119688] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/04/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Significant similarities were noticed post-publication between this article and an article submitted to the Journal of Drug Delivery Science and Technology on the same day, by an apparently unrelated research group: Tong Zhang, Tianhui Zhu, Fanyin Wang, Ling Peng and Mingying Lai 60 (2020) 101949 https://doi.org/10.1016/j.jddst.2020.101949 Moreover, the authors did not respond to the journal request to comment on these similarities and to provide the raw data, and the Editor-in-Chief decided to retract the article. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and genuine. As such this article represents a severe abuse of the scientific publishing system.
Collapse
Affiliation(s)
- Yanni Zhu
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Medical University, No. 167, Fangdong Street, Baqiao District, Xi'an, Shaanxi 710038, China
| | - Yanjuan Sheng
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong 250001, China.
| |
Collapse
|