1
|
Wu KY, Belaiche M, Wen Y, Choulakian MY, Tran SD. Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Polymers (Basel) 2024; 16:2882. [PMID: 39458711 PMCID: PMC11511139 DOI: 10.3390/polym16202882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Corneal endothelial dysfunction is a leading cause of vision loss globally, frequently requiring corneal transplantation. However, the limited availability of donor tissues, particularly in developing countries, has spurred on the exploration of tissue engineering strategies, with a focus on polymer biomaterials as scaffolds for corneal endotlhelium regeneration. This review provides a comprehensive overview of the advancements in polymer biomaterials, focusing on their role in supporting the growth, differentiation, and functional maintenance of human corneal endothelial cells (CECs). Key properties of scaffold materials, including optical clarity, biocompatibility, biodegradability, mechanical stability, permeability, and surface wettability, are discussed in detail. The review also explores the latest innovations in micro- and nano-topological morphologies, fabrication techniques such as electrospinning and 3D/4D bioprinting, and the integration of drug delivery systems into scaffolds. Despite significant progress, challenges remain in translating these technologies to clinical applications. Future directions for research are highlighted, including the need for improved biomaterial combinations, a deeper understanding of CEC biology, and the development of scalable manufacturing processes. This review aims to serve as a resource for researchers and clinician-scientists seeking to advance the field of corneal endothelium tissue engineering.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Myriam Belaiche
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ying Wen
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mazen Y. Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
2
|
Fernández Zapata WF, Cardona Maya Y, Isaza Merino C, Cardona Maya WD. Effects of nanotubes on semen quality and fertility in humans: A systematic review of literature. Arch Ital Urol Androl 2024; 96:12192. [PMID: 38451248 DOI: 10.4081/aiua.2024.12192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/15/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND In the medical field, it is increasingly common to observe the use of nanotubes, for example, in the administration of drugs. However, nanotubes raise concerns for male fertility due to potential effects on hormone levels and sperm quality observed in animal studies. In addition, animal exposure to multi-walled carbon nanotube models found alterations in hormone levels, sperm motility, and sperm count. Limited evidence in humans suggests no adverse effects, but further research is needed. This study aimed to perform a systematic review to assess the in vitro effects of nanotubes on semen and fertility in humans. METHODS We included all published in vitro studies about semen or sperm or male fertility and nanotubes in humans. A search was conducted in LILACS, PubMed, and SCOPUS as of May 2023. The risk of bias was assessed using the QUIN tool. RESULTS Four studies using nanotubes on human sperm were included, nanotubes exposure appears not to affect sperm viability; however, some alterations to motility, velocity and production of reactive oxygen species were reported. Limited evidence is provided because of the small quantity of publications. CONCLUSIONS Nanotubes appear to have no adverse effects on human sperm.
Collapse
Affiliation(s)
- William Felipe Fernández Zapata
- "SYMBIOSIS" Research Hotbed in Human Reproduction and Gestation, Faculty of Medicine, University of Antioquia, UdeA, Medellín; Reproduction Group, Department of Microbiology and Parasitology, Faculty of Medicine, University of Antioquia, Medellín.
| | - Yamile Cardona Maya
- Department of Basic Foundation, Pascual Bravo University Institution, Medellín.
| | - Cesar Isaza Merino
- Department of Mechanical Engineering, Faculty of Engineering, University of Antioquia, Medellín.
| | - Walter D Cardona Maya
- Reproduction Group, Department of Microbiology and Parasitology, Faculty of Medicine, University of Antioquia, Medellín.
| |
Collapse
|
3
|
Shar A, Shar A, Joung D. Carbon nanotube nanocomposite scaffolds: advances in fabrication and applications for tissue regeneration and cancer therapy. Front Bioeng Biotechnol 2023; 11:1299166. [PMID: 38179128 PMCID: PMC10764633 DOI: 10.3389/fbioe.2023.1299166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Carbon nanotube (CNT) nanocomposite scaffolds have emerged as highly promising frameworks for tissue engineering research. By leveraging their intrinsic electrical conductivity and valuable mechanical properties, CNTs are commonly dispersed into polymers to create robust, electrically conductive scaffolds that facilitate tissue regeneration and remodeling. This article explores the latest progress and challenges related to CNT dispersion, functionalization, and scaffold printing techniques, including electrospinning and 3D printing. Notably, these CNT scaffolds have demonstrated remarkable positive effects across various cell culture systems, stimulating neuronal growth, promoting cardiomyocyte maturation, and facilitating osteocyte differentiation. These encouraging results have sparked significant interest within the regenerative medicine field, including neural, cardiac, muscle, and bone regenerations. However, addressing the concern of CNT cytotoxicity in these scaffolds remains critical. Consequently, substantial efforts are focused on exploring strategies to minimize cytotoxicity associated with CNT-based scaffolds. Moreover, researchers have also explored the intriguing possibility of utilizing the natural cytotoxic properties of CNTs to selectively target cancer cells, opening up promising avenues for cancer therapy. More research should be conducted on cutting-edge applications of CNT-based scaffolds through phototherapy and electrothermal ablation. Unlike drug delivery systems, these novel methodologies can combine 3D additive manufacturing with the innate physical properties of CNT in response to electromagnetic stimuli to efficiently target localized tumors. Taken together, the unique properties of CNT-based nanocomposite scaffolds position them as promising candidates for revolutionary breakthroughs in both regenerative medicine and cancer treatment. Continued research and innovation in this area hold significant promise for improving healthcare outcomes.
Collapse
Affiliation(s)
- Andy Shar
- Department of Physics, Virginia Commonwealth University, Richmond, VA, United States
| | - Angela Shar
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Daeha Joung
- Department of Physics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
4
|
Zuo X, Zhang D, Zhang J, Fang T. Magnetic induction heating and drug release properties of magnetic carbon nanotubes. Int J Hyperthermia 2023; 40:2280448. [PMID: 37987751 DOI: 10.1080/02656736.2023.2280448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
AIM The use of magnetic carbon nanotubes for multi-modal cancer treatment, incorporating both hyperthermia and drug delivery functions, has drawn substantial interest. Yet, the present method of regulating hyperthermia temperature involves manually adjusting the magnetic field intensity, adding to the complexity and difficulty of clinical applications. This study seeks to design novel magnetic carbon nanotubes capable of self-temperature regulation, and investigate their drug loading and release characteristics. METHODS Using the co-precipitation method, we synthesized magnetic carbon nanotubes with a Curie temperature of 43 °C. A comprehensive investigation was conducted to analyze their morphology, crystal structure, and magnetic characteristics. To enhance their functionality, chitosan and sodium alginate modifications were introduced, enabling the loading of the antitumor drug doxorubicin hydrochloride (DOX) into these magnetic carbon nanotubes. Subsequently, the loading and release properties of DOX were investigated within the modified magnetic nanotubes. RESULTS Under alternating magnetic field, magnetic carbon nanotubes exhibit self-regulating properties by undergoing a magnetic phase transition, maintaining temperatures around 43 °C as required for hyperthermia. On the other hand, during magnetic induction heating, the release percentage of DOX reached 23.5% within 2 h and 71.7% within 70 h at tumor pH conditions, indicating their potential for sustained drug release. CONCLUSIONS The prepared magnetic carbon nanotubes can effectively regulate the temperature during hyperthermia treatment while ensuring controlled drug release, which presents a promising method for preparing nanomaterials that synergistically enhance magnetic hyperthermia and chemotherapy drugs.
Collapse
Affiliation(s)
- Xudong Zuo
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, PR China
| | - Dongmei Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, PR China
| | - Jiandong Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, PR China
| | - Tao Fang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, PR China
| |
Collapse
|
5
|
Controlled 5‐FU Release from P(NIPAM‐co‐VIm)‐g‐PEG Dual Responsive Hydrogels. ChemistrySelect 2023. [DOI: 10.1002/slct.202203522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
6
|
Application of Mesoporous Silica Nanoparticle-Chitosan-Loaded BMP-2 in the Repair of Bone Defect in Chronic Osteomyelitis. J Immunol Res 2022; 2022:4450196. [PMID: 35958879 PMCID: PMC9357812 DOI: 10.1155/2022/4450196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
In order to test the effectiveness of nanoparticle- (NP-) loaded bone morphogenetic protein 2 (BMP-2) in chronic osteomyelitis (CO) complicated with bone defect, a new nanodrug delivery system composed of mesoporous silica NP (MSN) and chitosan were used to load BMP-2 and transfer it to the target region. Bone marrow mesenchymal stem cells (BMSCs) were purchased and cultivated to detect the osteogenesis of chitosan-MSN (Chi-MSN) and polylactic acid glycolic acid (PLGA) delivery system. In addition, the osteogenesis of Chi-MSN was further determined by constructing a bone defect mouse model. In physicochemical property test, we found Chi-MSN NPs could effectively maintain stability in vivo and had pH response characteristics. As a result, the release efficiency of dexamethasone (Dex) and BMP-2 in the environment with pH 7.4 was less, while it increased significantly in pH 6, so as to reduce the BMP-2 and Dex loss during transportation in vivo. Otherwise, we found that the permeation efficiency of Chi-MSN was significantly higher than that of PLGA delivery system, so as to effectively transport BMP-2 and Dex to action target. In the BMSC test, we found that Chi-MSN could better promote their activity and osteogenesis, and the expression of osteogenesis-related genes (runt-related transcription factor 2 (RUNX-2), osteopontine (OPN), alkaline phosphatase (ALP), and osteopontine (OCN)) in the Chi-MSN group was higher. In the bone defect mouse model test, we also found obviously increased bone trabecula number and thickness by Chi-MSN, contributing to better repair of bone defects. Therefore, BMP-2@Chi-MSN may be a better choice for the therapy of CO complicated with bone defect in the future.
Collapse
|
7
|
Mostafavi E, Iravani S, Varma RS, Khatami M, Rahbarizadeh F. Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications. MATERIALS ADVANCES 2022; 3:4765-4782. [PMID: 35812837 PMCID: PMC9207599 DOI: 10.1039/d2ma00341d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes (CNTs) with attractive physicochemical characteristics such as high surface area, mechanical strength, functionality, and electrical/thermal conductivity have been widely studied in different fields of science. However, the preparation of these nanostructures on a large scale is either expensive or sometimes ecologically unfriendly. In this context, plenty of studies have been conducted to discover innovative methods to fabricate CNTs in an eco-friendly and inexpensive manner. CNTs have been synthesized using various natural hydrocarbon precursors, including plant extracts (e.g., tea-tree extract), essential oils (e.g., eucalyptus and sunflower oil), biodiesel, milk, honey, and eggs, among others. Additionally, agricultural bio-wastes have been widely studied for synthesizing CNTs. Researchers should embrace the usage of natural and renewable precursors as well as greener methods to produce various types of CNTs in large quantities with the advantages of cost-effectiveness and environmentally benign features. In addition, multifunctionalized CNTs with improved biocompatibility and targeting features are promising candidates for cancer theranostic applications owing to their attractive optical, chemical, thermal, and electrical properties. This perspective discusses the recent developments in eco-friendly synthesis of CNTs using green chemistry-based techniques, natural renewable resources, and sustainable catalysts, with emphasis on important challenges and future perspectives and highlighting techniques for the functionalization or modification of CNTs. Significant and promising cancer theranostic applications as well as their biocompatibility and cytotoxicity issues are also discussed.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine CA 94305 USA
- Department of Medicine, Stanford University School of Medicine Stanford CA 94305 USA
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences 81746-73461 Isfahan Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc Slechtitelu 27 783 71 Olomouc Czech Republic
| | - Mehrdad Khatami
- Non-communicable Diseases Research Center, Bam University of Medical Sciences Bam Iran
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| |
Collapse
|
8
|
Expatiating the Pharmacological and Nanotechnological Aspects of the Alkaloidal Drug Berberine: Current and Future Trends. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123705. [PMID: 35744831 PMCID: PMC9229453 DOI: 10.3390/molecules27123705] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022]
Abstract
Traditionally, herbal compounds have been the focus of scientific interest for the last several centuries, and continuous research into their medicinal potential is underway. Berberine (BBR) is an isoquinoline alkaloid extracted from plants that possess a broad array of medicinal properties, including anti-diarrheal, anti-fibrotic, antidiabetic, anti-inflammatory, anti-obesity, antihyperlipidemic, antihypertensive, antiarrhythmic, antidepressant, and anxiolytic effects, and is frequently utilized as a traditional Chinese medicine. BBR promotes metabolisms of glucose and lipids by activating adenosine monophosphate-activated protein kinase, stimulating glycolysis and inhibiting functions of mitochondria; all of these ameliorate type 2 diabetes mellitus. BBR has also been shown to have benefits in congestive heart failure, hypercholesterolemia, atherosclerosis, non-alcoholic fatty liver disease, Alzheimer’s disease, and polycystic ovary syndrome. BBR has been investigated as an interesting pharmacophore with the potential to contribute significantly to the research and development of novel therapeutic medicines for a variety of disorders. Despite its enormous therapeutic promise, the clinical application of this alkaloid was severely limited because of its unpleasant pharmacokinetic characteristics. Poor bioavailability, limited absorption, and poor water solubility are some of the obstacles that restricted its use. Nanotechnology has been suggested as a possible solution to these problems. The present review aims at recent updates on important therapeutic activities of BBR and different types of nanocarriers used for the delivery of BBR in different diseases.
Collapse
|
9
|
Quadir SS, Saharan V, Choudhary D, Harish, Jain CP, Joshi G. Nano-strategies as Oral Drug Delivery Platforms for Treatment of Cancer: Challenges and Future Perspectives. AAPS PharmSciTech 2022; 23:152. [PMID: 35606661 DOI: 10.1208/s12249-022-02301-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Oral drug administration is the oldest and widely used method for drug administration. The objectives behind developing an oral drug delivery for the treatment of cancer are to achieve low cost treatment by utilizing novel techniques to target cancer through gut-associated lymphoid tissue (GALT) and to enhance patient comfort and compliance through a hospital-free treatment leading to "Chemotherapy at Home." Unfortunately, due to the physiological environment of the GIT and physicochemical properties of drug candidate, the efficacy of oral drug delivery methods is limited in the treatment of cancer. Due to their low hydrophilicity, high P-gp efflux and restricted intestinal permeability most of the anti-cancer drugs fail to achieve oral bioavailability. The review focuses on the efforts, challenges, opportunities and studies conducted by scientists worldwide on the oral administration of anticancer medications via nanocarriers such as liposomes, SLNs and dendrimers, because of their potential to overcome the epithelial barrier associated with GALT, as well as the applications of different polymers in targeting the cancer. The oral delivery can set newer horizons in cancer therapy to make it more patient friendly.
Collapse
|
10
|
Overview of antimicrobial polyurethane-based nanocomposite materials and associated signalling pathways. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Adepu S, Ramakrishna S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021; 26:5905. [PMID: 34641447 PMCID: PMC8512302 DOI: 10.3390/molecules26195905] [Citation(s) in RCA: 425] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
The drug delivery system enables the release of the active pharmaceutical ingredient to achieve a desired therapeutic response. Conventional drug delivery systems (tablets, capsules, syrups, ointments, etc.) suffer from poor bioavailability and fluctuations in plasma drug level and are unable to achieve sustained release. Without an efficient delivery mechanism, the whole therapeutic process can be rendered useless. Moreover, the drug has to be delivered at a specified controlled rate and at the target site as precisely as possible to achieve maximum efficacy and safety. Controlled drug delivery systems are developed to combat the problems associated with conventional drug delivery. There has been a tremendous evolution in controlled drug delivery systems from the past two decades ranging from macro scale and nano scale to intelligent targeted delivery. The initial part of this review provides a basic understanding of drug delivery systems with an emphasis on the pharmacokinetics of the drug. It also discusses the conventional drug delivery systems and their limitations. Further, controlled drug delivery systems are discussed in detail with the design considerations, classifications and drawings. In addition, nano-drug delivery, targeted and smart drug delivery using stimuli-responsive and intelligent biomaterials is discussed with recent key findings. The paper concludes with the challenges faced and future directions in controlled drug delivery.
Collapse
Affiliation(s)
- Shivakalyani Adepu
- Center for Nanofibers and Nanotechnology, National University of Singapore (NUS), 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore (NUS), 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| |
Collapse
|
12
|
Au-O-MWCNTs and TiO2-O-MWCNTs as Efficient Nanocarriers for Dexamethasone: Adsorption Isotherms and Kinetic Studies. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/2040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this research, the fabrication of drug delivery systems based on oxidized multiwall carbon nanotubes (O-MWCNTs) was studied. Herein, TiO2 and Au were conjugated with O-MWCNTs to prepare efficient nanocarriers for dexamethasone (dex). The samples were characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In addition, dex loading was studied using adsorption isotherms including Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich. The results show that dex adsorption agreed well with the Freundlich isotherm. Increasing the TiO2 to O-MWCNT ratio from (1 : 4) to (1 : 2) can improve the adsorption capacity from
to 320
. The increasing Au amount increases the adsorption capacity from
(SA1) to maximum
(SA6). The maximum equilibrium binding energy
was obtained for SA2, and SA7 shows high binding strength between dex and the nanoadsorbent. Carbon nanotubes (CNTs) show good affinity with high loading capabilities for dexamethasone adsorption. The synthesized TiO2-O-MWCNTs:1/2 with the maximum removal percent (80%) was proposed as an appropriate nanocarrier for dexamethasone. Pseudo-first order, pseudo-second order, Elovich, and intraparticle diffusion models were investigated for all synthesized drug nanocarriers. According to regression coefficients, experimental data are in good agreement with the pseudo-second order model for all adsorbents except O-MWCNT/CTAB. Experimental results revealed that the Elovich model could account for the O-MWCNT/CTAB adsorbent.
Collapse
|
13
|
Saleemi MA, Kong YL, Yong PVC, Wong EH. An Overview of Antimicrobial Properties of Carbon Nanotubes-Based Nanocomposites. Adv Pharm Bull 2021; 12:449-465. [PMID: 35935059 PMCID: PMC9348533 DOI: 10.34172/apb.2022.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 07/02/2021] [Indexed: 11/28/2022] Open
Abstract
The development of carbon-based nanomaterials has extensively facilitated new discoveries in various fields. Carbon nanotube-based nanocomposites (CNT-based nanocomposites) have lately recognized as promising biomaterials for a wide range of biomedical applications due to their unique electronic, mechanical, and biological properties. Nanocomposite materials such as silver nanoparticles (AgNPs), polymers, biomolecules, enzymes, and peptides have been reported in many studies, possess a broad range of antibacterial activity when incorporated with carbon nanotubes (CNTs). It is crucial to understand the mechanism which governs the antimicrobial activity of these CNT-based nanocomposite materials, including the decoupling individual and synergistic effects on the cells. In this review, the interaction behavior between microorganisms and different types of CNT-based nanocomposites is summarized to understand the respective antimicrobial performance in different conditions. Besides, the current development stage of CNT-based nanocomposite materials, the technical challenges faced, and the exceptional prospect of implementing potential antimicrobial CNT-based nanocomposite materials are also discussed.
Collapse
Affiliation(s)
- Mansab Ali Saleemi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Yeo Lee Kong
- Department of Engineering and Applied Sciences, American Degree Program, Taylor’s University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Phelim Voon Chen Yong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
14
|
Yong HW, Kakkar A. Nanoengineering Branched Star Polymer-Based Formulations: Scope, Strategies, and Advances. Macromol Biosci 2021; 21:e2100105. [PMID: 34117840 DOI: 10.1002/mabi.202100105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Soft nanoparticles continue to offer a promising platform for the encapsulation and controlled delivery of poorly water-soluble drugs and help enhance their bioavailability at targeted sites. Linear amphiphilic block copolymers are the most extensively investigated in formulating delivery vehicles. However, more recently, there has been increasing interest in utilizing branched macromolecules for nanomedicine, as these have been shown to lower critical micelle concentrations, form particles of smaller dimensions, facilitate the inclusion of varied compositions and function-based entities, as well as provide prolonged and sustained release of cargo. In this review, it is aimed to discuss some of the key variables that are studied in tailoring branched architecture-based assemblies, and their influence on drug loading and delivery. By understanding structure-property relationships in these formulations, one can better design branched star polymers with suitable characteristics for efficient therapeutic interventions. The role played by polymer composition, chain architecture, crosslinking, stereocomplexation, compatibility between polymers and drugs, drug/polymer concentrations, and self-assembly methods in their performance as nanocarriers is highlighted.
Collapse
Affiliation(s)
- Hui Wen Yong
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec, H3A 0B8, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec, H3A 0B8, Canada
| |
Collapse
|
15
|
Hemmati K, Ahmadi Nasab N, Hesaraki S, Nezafati N. In vitro evaluation of curcumin-loaded chitosan-coated hydroxyapatite nanocarriers as a potential system for effective treatment of cancer. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1267-1287. [PMID: 33820489 DOI: 10.1080/09205063.2021.1910920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nanotechnology has many potential applications in cancer treatment. For example, nano-drug delivery systems (NDDS) with high bioavailability, biodegradability, and biocompatibility have been developed, in order to increase the therapeutic effects of anticancer drugs. Among these NDDS, high-performance hydroxyapatite (HA) nanoparticles are rapidly advancing in the targeted cancer treatment due to their numerous benefits. Curcumin is an herbal metabolite that acts as a chemical inhibitor through the inhibition of tumor cells and the progression of many cancers. However, the poor bioavailability of curcumin is the most important challenge in using this substance. In this study, HA nanoparticles coated by chitosan were used as a pH-sensitive biopolymer to improve the efficiency and bioavailability of curcumin. For this purpose, HA nanoparticles were first synthesized by the sol-gel method. Then, a layer of chitosan was coated on it, and the curcumin drug was encapsulated in the nanocarrier, under controlled conditions. Techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the nanocarriers. In the second part, nano-drugs prepared by various bioassays were examined. For this purpose, the rate of cytotoxicity by the methyl-thiazol-tetrazolium (MTT) assay and the rate of apoptosis induction by the acridine orange and ethidium bromide (AO/EB) staining method on the brain carcinoma U87MG cell line were investigated.
Collapse
Affiliation(s)
- Katayon Hemmati
- Hormoz Research Center, University of Hormozgan, Bandar Abbas, Iran.,Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | | | - Saeed Hesaraki
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Nader Nezafati
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
16
|
Yáñez-Sedeño P, González-Cortés A, Campuzano S, Pingarrón JM. Multimodal/Multifunctional Nanomaterials in (Bio)electrochemistry: Now and in the Coming Decade. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2556. [PMID: 33352731 PMCID: PMC7766190 DOI: 10.3390/nano10122556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Multifunctional nanomaterials, defined as those able to achieve a combined effect or more than one function through their multiple functionalization or combination with other materials, are gaining increasing attention in the last years in many relevant fields, including cargo targeted delivery, tissue engineering, in vitro and/or in vivo diseases imaging and therapy, as well as in the development of electrochemical (bio)sensors and (bio)sensing strategies with improved performance. This review article aims to provide an updated overview of the important advances and future opportunities exhibited by electrochemical biosensing in connection to multifunctional nanomaterials. Accordingly, representative aspects of recent approaches involving metal, carbon, and silica-based multifunctional nanomaterials are selected and critically discussed, as they are the most widely used multifunctional nanomaterials imparting unique capabilities in (bio)electroanalysis. A brief overview of the main remaining challenges and future perspectives in the field is also provided.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | | - Susana Campuzano
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | |
Collapse
|
17
|
Saleemi MA, Hosseini Fouladi M, Yong PVC, Chinna K, Palanisamy NK, Wong EH. Toxicity of Carbon Nanotubes: Molecular Mechanisms, Signaling Cascades, and Remedies in Biomedical Applications. Chem Res Toxicol 2020; 34:24-46. [PMID: 33319996 DOI: 10.1021/acs.chemrestox.0c00172] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbon nanotubes (CNTs) are the most studied allotropic form of carbon. They can be used in various biomedical applications due to their novel physicochemical properties. In particular, the small size of CNTs, with a large surface area per unit volume, has a considerable impact on their toxicity. Despite of the use of CNTs in various applications, toxicity is a big problem that requires more research. In this Review, we discuss the toxicity of CNTs and the associated mechanisms. Physicochemical factors, such as metal impurities, length, size, solubilizing agents, CNTs functionalization, and agglomeration, that may lead to oxidative stress, toxic signaling pathways, and potential ways to control these mechanisms are also discussed. Moreover, with the latest mechanistic evidence described in this Review, we expect to give new insights into CNTs' toxicological effects at the molecular level and provide new clues for the mitigation of harmful effects emerging from exposure to CNTs.
Collapse
Affiliation(s)
- Mansab Ali Saleemi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Mohammad Hosseini Fouladi
- School of Engineering, Faculty of Innovation and Technology, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Phelim Voon Chen Yong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Karuthan Chinna
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Navindra Kumari Palanisamy
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000 Sungai Buloh, Selangor, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|