1
|
Nur MG, Rahman M, Dip TM, Hossain MH, Hossain NB, Baratchi S, Padhye R, Houshyar S. Recent advances in bioactive wound dressings. Wound Repair Regen 2025; 33:e13233. [PMID: 39543919 DOI: 10.1111/wrr.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/17/2024]
Abstract
Traditional wound dressings, despite their widespread use, face limitations, such as poor infection control and insufficient healing promotion. To address these challenges, bioactive materials have emerged as a promising solution in wound care. This comprehensive review explores the latest developments in wound healing technologies, starting with an overview of the importance of effective wound management, emphasising the need for advanced bioactive wound dressings. The review further explores various bioactive materials, defining their characteristics. It covers a wide range of natural and synthetic biopolymers used to develop bioactive wound dressings. Next, the paper discusses the incorporation of bioactive agents into wound dressings, including antimicrobial and anti-inflammatory agents, alongside regenerative components like growth factors, platelet-rich plasma, platelet-rich fibrin and stem cells. The review also covers fabrication techniques for bioactive wound dressings, highlighting techniques like electrospinning, which facilitated the production of nanofibre-based dressings with controlled porosity, the sol-gel method for developing bioactive glass-based dressings, and 3D bioprinting for customised, patient-specific dressings. The review concludes by addressing the challenges and future perspectives in bioactive wound dressing development. It includes regulatory considerations, clinical efficacy, patient care protocol integration and wound healing progress monitoring. Furthermore, the review considers emerging trends such as smart materials, sensors and personalised medicine approaches, offering insights into the future direction of bioactive wound dressing research.
Collapse
Affiliation(s)
- Md Golam Nur
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
- Department of Textiles, Ministry of Textiles and Jute, Government of the People's Republic of Bangladesh, Dhaka, Bangladesh
| | - Mustafijur Rahman
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Tanvir Mahady Dip
- Department of Materials, University of Manchester, Manchester, UK
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Md Hasibul Hossain
- Department of Textile Engineering, International Standard University, Dhaka, Bangladesh
| | - Nusrat Binta Hossain
- TJX Australia Pty Limited, Preston, Victoria, Australia
- Department of Environmental Science & Management, North South University, Dhaka, Bangladesh
| | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Rajiv Padhye
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Qureshi SS, Nizamuddin S, Xu J, Vancov T, Chen C. Cellulose nanocrystals from agriculture and forestry biomass: synthesis methods, characterization and industrial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58745-58778. [PMID: 39340607 PMCID: PMC11513767 DOI: 10.1007/s11356-024-35127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Agricultural and forestry biomass wastes, often discarded or burned without adequate management, lead to significant environmental harm. However, cellulose nanocrystals (CNCs), derived from such biomass, have emerged as highly promising materials due to their unique properties, including high tensile strength, large surface area, biocompatibility, and renewability. This review provides a detailed analysis of the lignocellulosic composition, as well as the elemental and proximate analysis of different biomass sources. These assessments help determine the yield and characteristics of CNCs. Detailed discussion of CNC synthesis methods -ranging from biomass pretreatment to hydrolysis techniques such as acid, mineral, solid acid, ionic liquid, and enzymatic methods-are provided. The key physical, chemical, and thermal properties of CNCs are also highlighted, particularly in relation to their industrial applications. Recommendations for future research emphasize the need to optimize CNC synthesis processes, identify suitable biomass feedstocks, and explore new industrial applications.
Collapse
Affiliation(s)
- Sundus Saeed Qureshi
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, Brisbane, Queensland, 4111, Australia
- Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Sabzoi Nizamuddin
- Water Regulation Division, Grampians Wimmera Mallee Water (GWMWater) Corporation, Horsham, Victoria, 3400, Australia
| | - Jia Xu
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, Brisbane, Queensland, 4111, Australia
- Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Tony Vancov
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| | - Chengrong Chen
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, Brisbane, Queensland, 4111, Australia.
- Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia.
| |
Collapse
|
3
|
Seneviratne DM, Raphael B, Whiteside EJ, Windus LC, Kauter K, Dearnaley JD, Annamalai PK, Ward R, Song P, Burey P(P. A low-cost, antimicrobial aloe-alginate hydrogel film containing Australian First Nations remedy 'lemon myrtle oil' ( Backhousia citriodora) - Potential for incorporation into wound dressings. Heliyon 2024; 10:e37516. [PMID: 39315217 PMCID: PMC11417235 DOI: 10.1016/j.heliyon.2024.e37516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Chronic wounds pose a global public health challenge, particularly in remote settings where access to specialised wound care and dressings can be limited and cost-prohibitive. First Nations communities in Australia are at a significantly higher risk for developing chronic wounds and this risk further increases for people living in remote regions. There is an urgent need to develop inexpensive but effective wound dressings to improve wound outcomes. Over the past decade, sodium alginate (SA)-based hydrogel polymers have emerged as a cost-effective and biocompatible component in wound dressings, and many have been successfully commercialised. In this study, we have developed and evaluated various prototypes of SA-based hydrogels with the addition of another low-cost component, aloe vera (AV) to further tailor the physicochemical properties of the hydrogel. Since the presence of microbes is a major contributor to the pathophysiology of chronic wounds, we also evaluated the antimicrobial activity of lemon myrtle oil (LMO) (Backhousia citriodora) incorporated into the hydrogel, a remedy used traditionally by First Nations Australians. Novel formulations of AV-SA-LMO hydrogel prototypes in the absence and presence of lemon myrtle oil (at a concentration of 5 μg/mL) were assessed for their physicochemical and antimicrobial properties and compared to a commercially available hydrogel-based dressing. The addition of lemon myrtle oil imparted viscoelastic behaviour for improved processability of AV-SA-LMO hydrogel prototypes, while increasing protein adhesion, enhancing physical properties, and demonstrating antimicrobial activity against the common wound-infecting microbes Staphylococcus epidermidis and Candida albicans. Fourier transmission infrared (FTIR) spectra confirmed the molecular structures of the hydrogel prototypes as predicted. The prototypes also demonstrated biocompatibility with the HaCaT human keratinocyte cell line. This study has provided preliminary evidence that a 25:75 aloe vera:sodium alginate hydrogel with 5 μg/mL lemon myrtle oil has comparable physicochemical characteristics to a commercial hydrogel-based wound dressing and antimicrobial properties against S. epidermidis and C. albicans.
Collapse
Affiliation(s)
- Dinuki M. Seneviratne
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Future Materials, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Brooke Raphael
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Eliza J. Whiteside
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Future Materials, University of Southern Queensland, Toowoomba, Queensland, Australia
- Institute for Resilient Regions, University of Southern Queensland, Toowoomba, Australia
| | - Louisa C.E. Windus
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Future Materials, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Kate Kauter
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - John D.W. Dearnaley
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Pratheep K. Annamalai
- Centre for Future Materials, University of Southern Queensland, Toowoomba, Queensland, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Queensland, Australia
| | - Raelene Ward
- Centre for Health Research, University of Southern Queensland, Toowoomba, Queensland, Australia
- Institute for Resilient Regions, University of Southern Queensland, Toowoomba, Australia
- Kunja Traditional Owner, Cunnamulla, Queensland, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Toowoomba, Queensland, Australia
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Paulomi (Polly) Burey
- Centre for Future Materials, University of Southern Queensland, Toowoomba, Queensland, Australia
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, Australia
| |
Collapse
|
4
|
Lopes LM, Germiniani LGL, Rocha Neto JBM, Andrade PF, da Silveira GAT, Taketa TB, Gonçalves MDC, Beppu MM. Preparation and characterization of porous membranes of glucomannan and silver decorated cellulose nanocrystals for application as biomaterial. Int J Biol Macromol 2023; 250:126236. [PMID: 37562469 DOI: 10.1016/j.ijbiomac.2023.126236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Bacterial infection usually represents a threat in medical wound care, due to the increase in treatment complexity and the risk of antibiotic resistance. For presenting interesting characteristics for the use as biomaterial, natural polymers have been explored for this application. Among them, a promising candidate is the konjac glucomannan (KGM) with outstanding biocompatibility and biodegradability but lack of antibacterial activity. In this study, KGM was combined with silver decorated cellulose nanocrystals (CNC-Ag) to prepare membranes by using a recent reported casting-freezing method. The results highlight the potential anti-adhesive activity of the new materials against Staphylococcus aureus upon contact, without the burst release of silver nanoparticles. Furthermore, the incorporation of CNC enhanced the thermal stability of these membranes while preserving the favorable mechanical properties of the KGM-based material. These findings highlight a straightforward approach to enhance the antibacterial properties of natural polymers, which can be effectively useful in medical devices like wound dressings that typically lack such properties.
Collapse
Affiliation(s)
- Laise Maia Lopes
- University of Campinas, School of Chemical Engineering, Campinas, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Chelu M, Musuc AM, Popa M, Calderon Moreno J. Aloe vera-Based Hydrogels for Wound Healing: Properties and Therapeutic Effects. Gels 2023; 9:539. [PMID: 37504418 PMCID: PMC10379830 DOI: 10.3390/gels9070539] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Aloe vera-based hydrogels have emerged as promising platforms for the delivery of therapeutic agents in wound dressings due to their biocompatibility and unique wound-healing properties. The present study provides a comprehensive overview of recent advances in the application of Aloe vera-based hydrogels for wound healing. The synthesis methods, structural characteristics, and properties of Aloe vera-based hydrogels are discussed. Mechanisms of therapeutic agents released from Aloe vera-based hydrogels, including diffusion, swelling, and degradation, are also analyzed. In addition, the therapeutic effects of Aloe vera-based hydrogels on wound healing, as well as the reduction of inflammation, antimicrobial activity, and tissue regeneration, are highlighted. The incorporation of various therapeutic agents, such as antimicrobial and anti-inflammatory ones, into Aloe vera-based hydrogels is reviewed in detail. Furthermore, challenges and future prospects of Aloe vera-based hydrogels for wound dressing applications are considered. This review provides valuable information on the current status of Aloe vera-based hydrogels for the delivery of therapeutic agents in wound dressings and highlights their potential to improve wound healing outcomes.
Collapse
Affiliation(s)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| | | | - Jose Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| |
Collapse
|
6
|
Mohammed-Sadhakathullah AHM, Paulo-Mirasol S, Torras J, Armelin E. Advances in Functionalization of Bioresorbable Nanomembranes and Nanoparticles for Their Use in Biomedicine. Int J Mol Sci 2023; 24:10312. [PMID: 37373461 PMCID: PMC10299464 DOI: 10.3390/ijms241210312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Bioresorbable nanomembranes (NMs) and nanoparticles (NPs) are powerful polymeric materials playing an important role in biomedicine, as they can effectively reduce infections and inflammatory clinical patient conditions due to their high biocompatibility, ability to physically interact with biomolecules, large surface area, and low toxicity. In this review, the most common bioabsorbable materials such as those belonging to natural polymers and proteins for the manufacture of NMs and NPs are reviewed. In addition to biocompatibility and bioresorption, current methodology on surface functionalization is also revisited and the most recent applications are highlighted. Considering the most recent use in the field of biosensors, tethered lipid bilayers, drug delivery, wound dressing, skin regeneration, targeted chemotherapy and imaging/diagnostics, functionalized NMs and NPs have become one of the main pillars of modern biomedical applications.
Collapse
Affiliation(s)
- Ahammed H. M. Mohammed-Sadhakathullah
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Sofia Paulo-Mirasol
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Juan Torras
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Elaine Armelin
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| |
Collapse
|
7
|
Bal-Öztürk A, Torkay G, İdil N, Özkahraman B, Özbaş Z. Gellan gum/guar gum films incorporated with honey as potential wound dressings. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Anthocyanin/Honey-Incorporated Alginate Hydrogel as a Bio-Based pH-Responsive/Antibacterial/Antioxidant Wound Dressing. J Funct Biomater 2023; 14:jfb14020072. [PMID: 36826871 PMCID: PMC9961009 DOI: 10.3390/jfb14020072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Infection is a major problem that increases the normal pH of the wound bed and interferes with wound healing. Natural biomaterials can serve as a suitable environment to acquire a great practical effect on the healing process. In this context, anthocyanin-rich red cabbage (Brassica oleracea var. capitata F. rubra) extract and honey-loaded alginate hydrogel was fabricated using calcium chloride as a crosslinking agent. The pH sensitivity of anthocyanins can be used as an indicator to monitor possible infection of the wound, while honey would promote the healing process by its intrinsic properties. The mechanical properties of the hydrogel film samples showed that honey acts as a plasticizer and that increasing the incorporation from 200% to 400% enhances the tensile strength from 3.22 to 6.15 MPa and elongation at break from 0.69% to 4.75%. Moreover, a water absorption and retention study showed that the hydrogel film is able to absorb about 250% water after 50 min and retain 40% of its absorbed water after 12 h. The disk diffusion test showed favorable antibacterial activity of the honey-loaded hydrogel against both Gram-positive and Gram-negative Staphylococcus aureus and Escherichia coli, respectively. In addition, the incorporation of honey significantly improved the mechanical properties of the hydrogel. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay proved the antioxidant activity of the honey and anthocyanin-containing hydrogel samples with more than 95% DPPH scavenging efficiency after 3 h. The pH-dependent property of the samples was investigated and recorded by observing the color change at different pH values of 4, 7, and 9 using different buffers. The result revealed a promising color change from red at pH = 4 to blue at pH = 7 and purple at pH = 9. An in vitro cell culture study of the samples using L929 mouse fibroblast cells showed excellent biocompatibility with significant increase in cell proliferation. Overall, this study provides a promising start and an antibacterial/antioxidant hydrogel with great potential to meet wound-dressing requirements.
Collapse
|
9
|
Selected Biopolymers' Processing and Their Applications: A Review. Polymers (Basel) 2023; 15:polym15030641. [PMID: 36771942 PMCID: PMC9919854 DOI: 10.3390/polym15030641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Petroleum-based polymers are used in a multitude of products in the commercial world, but their high degree of contamination and non-biodegradability make them unattractive. The development and use of polymers derived from nature offer a solution to achieve an environmentally friendly and green alternative and reduce waste derived from plastics. This review focuses on showing an overview of the most widespread production methods for the main biopolymers. The parameters affecting the development of the technique, the most suitable biopolymers, and the main applications are included. The most studied biopolymers are those derived from polysaccharides and proteins. These biopolymers are subjected to production methods that improve their properties and modify their chemical structure. Process factors such as temperature, humidity, solvents used, or processing time must be considered. Among the most studied production techniques are solvent casting, coating, electrospinning, 3D printing, compression molding, and graft copolymerization. After undergoing these production techniques, biopolymers are applied in many fields such as biomedicine, pharmaceuticals, food packaging, scaffold engineering, and others.
Collapse
|
10
|
Dhasmana A, Malik S, Sharma AK, Ranjan A, Chauhan A, Harakeh S, Al-Raddadi RM, Almashjary MN, Bawazir WMS, Haque S. Fabrication and evaluation of herbal beads to slow cell ageing. Front Bioeng Biotechnol 2022; 10:1025405. [PMID: 36568310 PMCID: PMC9773394 DOI: 10.3389/fbioe.2022.1025405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Several therapies and cosmetics are available commercially to prevent or delay cell ageing, which manifests as premature cell death and skin dullness. Use of herbal products such as Aloe vera, curcumin, vitamin C-enriched natural antioxidant, and anti-inflammatory biomolecules are potential ways to prevent or delay ageing. Eggshell membrane (ESM) is also a rich source of collagen; glycosaminoglycans (GAGs) also play an essential role in healing and preventing ageing. It is important to use an extended therapeutic process to prolong the effectiveness of these products, despite the fact that they all have significant anti-ageing properties and the ability to regenerate healthy cells. Encapsulated herbal components are therefore designed to overcome the challenge of ensuring continued treatment over time to prolong the effects of a bioactive component after in situ administration. To study their synergistic effects on a cellular level, alginate, Aloe vera, and orange peel extract were encapsulated in bio-polymeric foaming beads and modified with eggshell membrane protein (ESMP) at various concentrations (1 gm, 2 gm, and 5 gm): (A-Av-OP, A-Av-OP-ESMP1, ESMP2, and ESMP3). Analysis of the structural and functional properties of foaming beads showed interconnected 3D porous structure, a surface-functionalized group for entrapment of ESMP, and a significant reduction in pore size (51-35 m) and porosity (80%-60%). By performing DPPH assays, HRBC stabilization assays, and antibacterial tests, the beads were assessed as a natural anti-ageing product with sustained release of molecules effective against inflammatory response, oxidative stress, and microbial contamination. MTT assays were conducted using in vitro cell cultures to demonstrate cytocompatibility (in mouse 3T3 fibroblast cells) and cytotoxicity (in human carcinoma HeLa cells). Our study demonstrates that bio-polymeric ESMP beads up to 2 g (A-Av-OP-ESMP2) are practical and feasible natural remedies for suspending defective cell pathways, preventing cell ageing, and promoting healthy cell growth, resulting in a viable and practical natural remedy or therapeutic system.
Collapse
Affiliation(s)
- Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Amit Kumar Sharma
- Department of Biotechnology, Dr KNMIPER, Modinagar, Uttar Pradesh, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, India
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rajaa M. Al-Raddadi
- Department of Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed N. Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Mohammed S. Bawazir
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
11
|
Evaluation of Sodium Alginate Stabilized Nanoparticles and Antibiotics against Drug Resistant Escherichia coli Isolated from Gut of Houbara Bustard Bird. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7627759. [PMID: 36132226 PMCID: PMC9484970 DOI: 10.1155/2022/7627759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/12/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022]
Abstract
Alternative approaches and/or modified approaches to tackle resistance in gut microbes are need of the hour. The current study was planned to find the resistance modulation and toxicity potential of sodium alginate stabilized MgO nanoparticles and antibiotics against Escherichia coli (E. coli) isolated from the gut of Houbara bustard bird (
fecal samples). The preparations consisted of gel stabilized ampicillin (G+A), gel stabilized MgO and ampicillin (G+M+A), gel stabilized MgO and cefoxitin (G+M+C), gel stabilized tylosin (G+T), gel stabilized MgO and tylosin (G+M+T), and gel stabilized MgO (M+G). The fecal samples showed 53% (56/105) prevalence of E. coli which was found to be significantly (
) associated with most of the assumed factors and resistant to multiple drugs. G+M+T showed the lowest (
μg/mL) minimum inhibitory concentration (MIC) followed G+M+C, G+M+A, G+A, M+G, and G+T. Significant reduction (
) in MIC with respect to incubation interval found at the 16th hr for G+M+A, G+A, and G+M+C that further remained nonsignificant (
) onwards until the 24th hr of incubation. In the case of G+T and M+G, significant reduction in MIC was found at the 20th hr and 24th hr of incubation. Ecotoxicology and histopathology trials on snails showed mild changes in MICs of the preparations. The study thus concluded increasing drug resistance in E. coli of houbara bird while sodium alginate stabilized MgO nanoparticles and antibiotics were effective alternative antibacterial composites with mild toxicity.
Collapse
|
12
|
Hadi A, Nawab A, Alam F, Zehra K. Alginate/aloe vera films reinforced with tragacanth gum. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100105. [PMID: 35769402 PMCID: PMC9235049 DOI: 10.1016/j.fochms.2022.100105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 01/27/2023]
Abstract
The objective of present study was to investigate the effect of incorporation of varying concentrations (2% to 14%) of Tragacanth gum (TG) to alginate/aloe vera composite films to enhance their functional properties. The resulting films were investigated for their mechanical, barrier, optical properties and biodegradability. The WVP, swelling capacity and thickness of films increased significantly by the addition of TG while film solubility was dropped at higher concentration of TG. It was observed that TG acted as an efficient reinforcing agent for enhancing the strength and flexibility of the films. The tensile strength (TS) of films increased more than threefold as compared to control, reaching a maximum value 67.64 N/mm2at 12% concentration of TG. Colour properties were affected by the addition of TG as the higher the concentration, the darker the films.
Collapse
Affiliation(s)
- Alina Hadi
- Department of Food Science & Technology, University of Karachi, Karachi 75270, Pakistan
| | - Anjum Nawab
- Department of Food Science & Technology, University of Karachi, Karachi 75270, Pakistan
| | - Feroz Alam
- Department of Food Science & Technology, University of Karachi, Karachi 75270, Pakistan
| | - Kishwar Zehra
- Department of Food Science & Technology, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
13
|
Pradhan D, Jaiswal AK, Jaiswal S. Emerging technologies for the production of nanocellulose from lignocellulosic biomass. Carbohydr Polym 2022; 285:119258. [DOI: 10.1016/j.carbpol.2022.119258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022]
|
14
|
Alruwaili NK, Ahmad N, Alzarea AI, Alomar FA, Alquraini A, Akhtar S, Shahari MSB, Zafar A, Elmowafy M, Elkomy MH, Dolzhenko AV, Iqbal MS. Arabinoxylan-Carboxymethylcellulose Composite Films for Antibiotic Delivery to Infected Wounds. Polymers (Basel) 2022; 14:polym14091769. [PMID: 35566937 PMCID: PMC9103158 DOI: 10.3390/polym14091769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
Modern dressings should provide for local delivery of antibiotics and protect the wound from bacterial infection, dehydration and environmental factors to achieve optimal healing. The local delivery of antibiotics can reduce adverse effects and resistance challenges. In this study, we fabricated film dressings composed of arabinoxylan (AX) from Plantago ovata seed husks and carboxymethylcellulose (CMC) by a solvent cast method for the delivery of the antibiotic amikacin (AMK). To determine the suitability of the prepared AX-CMC composite films as wound dressings and drug delivery materials, their physical, chemical, mechanical, morphological, thermal, pharmaceutical, antimicrobial, cytocompatible, and drug delivery properties were investigated. The results demonstrated that the dressings were suitable for delivering the drug at the wound site in a sustained manner and keeping the environment moist for rapid healing. The AMK-loaded AX-CMC films exhibited controlled release of AMK, excellent antibacterial activity, and cytocompatibility. Thus, the AX-CMC composite films appear to be promising bioactive dressing materials for the prevention of wound infections.
Collapse
Affiliation(s)
- Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; (N.K.A.); (A.Z.); (M.E.); (M.H.E.)
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; (N.K.A.); (A.Z.); (M.E.); (M.H.E.)
- Correspondence:
| | - Abdulaziz I. Alzarea
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Fadhel A. Alomar
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Ali Alquraini
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia;
| | - Sultan Akhtar
- Department of Biophysics Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Muhammad Syafiq Bin Shahari
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (M.S.B.S.); (A.V.D.)
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; (N.K.A.); (A.Z.); (M.E.); (M.H.E.)
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; (N.K.A.); (A.Z.); (M.E.); (M.H.E.)
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; (N.K.A.); (A.Z.); (M.E.); (M.H.E.)
| | - Anton V. Dolzhenko
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (M.S.B.S.); (A.V.D.)
| | - Mohammad Saeed Iqbal
- Department of Chemistry, Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan;
| |
Collapse
|
15
|
Development and Characterization of Gentamicin-Loaded Arabinoxylan-Sodium Alginate Films as Antibacterial Wound Dressing. Int J Mol Sci 2022; 23:ijms23052899. [PMID: 35270041 PMCID: PMC8911204 DOI: 10.3390/ijms23052899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Biopolymer-based antibacterial films are attractive materials for wound dressing application because they possess chemical, mechanical, exudate absorption, drug delivery, antibacterial, and biocompatible properties required to support wound healing. Herein, we fabricated and characterized films composed of arabinoxylan (AX) and sodium alginate (SA) loaded with gentamicin sulfate (GS) for application as a wound dressing. The FTIR, XRD, and thermal analyses show that AX, SA, and GS interacted through hydrogen bonding and were thermally stable. The AXSA film displays desirable wound dressing characteristics: transparency, uniform thickness, smooth surface morphology, tensile strength similar to human skin, mild water/exudate uptake capacity, water transmission rate suitable for wound dressing, and excellent cytocompatibility. In Franz diffusion release studies, >80% GS was released from AXSA films in two phases in 24 h following the Fickian diffusion mechanism. In disk diffusion assay, the AXSA films demonstrated excellent antibacterial effect against E.coli, S. aureus, and P. aeruginosa. Overall, the findings suggest that GS-loaded AXSA films hold potential for further development as antibacterial wound dressing material.
Collapse
|
16
|
Özbaş Z, Özkahraman B, Akgüner ZP, Bal-Öztürk A. Evaluation of modified pectin/alginate buccal patches with enhanced mucoadhesive properties for drug release systems: In-vitro and ex-vivo study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Liu Y, Qin X, Rogachev A, Rogachev A, Kontsevaya I, Pyzh A, Jiang X, Yarmolenko V, Rudenkov A, Yarmolenko M. Structure and properties of microcellulose-based coatings deposited via a low-energy electron beam and their effect on the properties of onto wound dressings. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
18
|
Feng J, Niu Y, Zhang Y, Zuo H, Wang S, Liu X. Ficus carica extract impregnated amphiphilic polymer scaffold for diabetic wound tissue regenerations. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:219-229. [PMID: 33666536 DOI: 10.1080/21691401.2021.1890610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/24/2021] [Indexed: 12/25/2022]
Abstract
Diabetes associated injury healing and other tissue irregularities are viewed as a significant concern. The purpose of the study is to design the wound regeneration activity of Ficus carica extract (FFE) loaded amphiphilic polymeric scaffold of poly(xylitol-g-adipate-co-glutamide) (PXAG)-polyhydroxybutyrate (PHB) for potential diabetic affected wound regeneration. The PXAG copolymer was prepared by the condensation method, and the polymeric scaffolds of PXAG-PHB, PXAG-PHB/FFE were developed through the ultra-sonication process and magnetic stirrer processes. The chemical structure, crystalline nature, thermal stability, size, surface charge and surface morphology of PXAG-PHB and PXAG-PHB/FFE polymeric scaffolds were investigated. The PXAG-PHB/FFE exhibits 99.0% free radical scavenging activity which was determined by the DPPH method. The inhibition zones by the PXAG-PHB/FFE indicate it had a higher antibacterial activity with the Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) pathogens. The PXAG, PXAG-PHB and PXAG-PHB/FFE polymeric scaffolds exhibited good viability against diabetic induced wound cells (WS1) in 100 μg/mL concentrations up to 72 h incubation. Since the synthesized PXAG-PHB/FFE polymeric scaffolds possess excellent thermal stability, bioactivity, biocompatibility and antioxidant activity along with potent antimicrobial activity, they play a potential role in diabetic wound tissue regenerations.
Collapse
Affiliation(s)
- Jia Feng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Yu Niu
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Yi Zhang
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Hong Zuo
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Shujin Wang
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Xufeng Liu
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| |
Collapse
|
19
|
Gheorghita Puscaselu R, Besliu I, Gutt G. Edible Biopolymers-Based Materials for Food Applications-The Eco Alternative to Conventional Synthetic Packaging. Polymers (Basel) 2021; 13:polym13213779. [PMID: 34771336 PMCID: PMC8587799 DOI: 10.3390/polym13213779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022] Open
Abstract
The problem of waste generated by packaging obtained from conventional synthetic materials, often multilayer, has become more and more pressing with increasing consumption. In this context, nature and humanity have suffered the most. In order to address this phenomenon, global and European organizations have launched and promoted programs and strategies. Replacing petroleum-based packaging with biopolymer packaging has proven to be a real alternative. Thus, the substitution of plastics with biodegradable, non-toxic, edible materials, which can be obtained from marine or agro-industrial waste, is of interest. In the present study, we aimed to develop natural edible materials, obtained entirely from biopolymers such as agar and sodium alginate and plasticized with glycerol and water. Designed to be used for food and food supplements packaging, they can be completely solubilized before consumption. The films were developed through a casting method and were tested in order to identify the physical, optical, and solubility properties. According to the results, the most suitable composition for use as a hydrosoluble packaging material contains agar:alginate:glycerol in a 2:1:1 ratio. The microstructure indicates a homogeneous film, with low roughness values (Rz = 12.65 ± 1.12 µm), high luminosity (92.63), above-average transmittance (T = 51.70%), and low opacity (6.30 A* mm−1). The obtained results are of interest and highlight the possibility of substituting intensely polluting materials with those based on biopolymers.
Collapse
Affiliation(s)
- Roxana Gheorghita Puscaselu
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
- Correspondence:
| | - Irina Besliu
- Faculty of Mechanical Engineering, Automotive and Robotics, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Gheorghe Gutt
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
20
|
Momin M, Mishra V, Gharat S, Omri A. Recent advancements in cellulose-based biomaterials for management of infected wounds. Expert Opin Drug Deliv 2021; 18:1741-1760. [PMID: 34605347 DOI: 10.1080/17425247.2021.1989407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Chronic wounds are a substantial burden on the healthcare system. Their treatment requires advanced dressings, which can provide a moist wound environment, prevent bacterial infiltration, and act as a drug carrier. Cellulose is biocompatible, biodegradable, and can be functionalized according to specific requirements, which makes it a highly versatile biomaterial. Antimicrobial cellulose dressings are proving to be highly effective against infected wounds. AREAS COVERED This review briefly addresses the mechanism of wound healing and its pathophysiology. It also discusses wound infections, biofilm formation, and progressive emergence of drug-resistant bacteria in chronic wounds and the treatment strategies for such types of infected wounds. It also summarizes the general properties, method of production, and types of cellulose wound dressings. It explores recent studies and advancements regarding the use of cellulose and its derivatives in wound management. EXPERT OPINION Cellulose and its various functionalized derivatives represent a promising choice of wound dressing material. Cellulose-based dressings loaded with antimicrobials are very useful in controlling infection in a chronic wound. Recent studies showing its efficacy against drug-resistant bacteria make it a favorable choice for chronic wound infections. Further research and large-scale clinical trials are required for better clinical evidence of its efficiency.
Collapse
Affiliation(s)
- Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.,SVKM's C B Patel Research Center for Chemistry and Biological Sciences, Mumbai, India
| | - Varsha Mishra
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
21
|
Alven S, Khwaza V, Oyedeji OO, Aderibigbe BA. Polymer-Based Scaffolds Loaded with Aloe vera Extract for the Treatment of Wounds. Pharmaceutics 2021; 13:961. [PMID: 34206744 PMCID: PMC8309095 DOI: 10.3390/pharmaceutics13070961] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
The treatment of wounds is one challenging biomedical field due to delayed wound healing common in chronic wounds. Several factors delay wound healing, including microbial infections, malnutrition, underlying physiological conditions, etc. Most of the currently used wound dressing materials suffer from poor antimicrobial properties, poor biodegradability and biocompatibility, and weak mechanical performance. Plant extracts, such as Aloe vera, have attracted significant attention in wound management because of their interesting biological properties. Aloe vera is composed of essential constituents beneficial for the wound healing process, such as amino acids, vitamins C and E, and zinc. Aloe vera influences numerous factors that are involved in wound healing and stimulates accelerated healing. This review reports the therapeutic outcomes of aloe vera extract-loaded polymer-based scaffolds in wound management.
Collapse
Affiliation(s)
| | | | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape, South Africa; (S.A.); (V.K.); (O.O.O.)
| |
Collapse
|
22
|
Baniasadi H, Ajdary R, Trifol J, Rojas OJ, Seppälä J. Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels. Carbohydr Polym 2021; 266:118114. [PMID: 34044931 DOI: 10.1016/j.carbpol.2021.118114] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Direct-ink-writing (DIW) of hydrogels has become an attractive research area due to its capability to fabricate intricate, complex, and highly customizable structures at ambient conditions for various applications, including biomedical purposes. In the current study, cellulose nanofibrils reinforced aloe vera bio-hydrogels were utilized to develop 3D geometries through the DIW technique. The hydrogels revealed excellent viscoelastic properties enabled extruding thin filaments through a nozzle with a diameter of 630 μm. Accordingly, the lattice structures were printed precisely with a suitable resolution. The 3D-printed structures demonstrated significant wet stability due to the high aspect ratio of the nano- and microfibrils cellulose, reinforced the hydrogels, and protected the shape from extensive shrinkage upon drying. Furthermore, all printed samples had a porosity higher than 80% and a high-water uptake capacity of up to 46 g/g. Altogether, these fully bio-based, porous, and wet stable 3D structures might have an opportunity in biomedical fields.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Jon Trifol
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland; Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC Canada V6T 1Z3
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| |
Collapse
|
23
|
Karimi Khorrami N, Radi M, Amiri S, McClements DJ. Fabrication and characterization of alginate-based films functionalized with nanostructured lipid carriers. Int J Biol Macromol 2021; 182:373-384. [PMID: 33781817 DOI: 10.1016/j.ijbiomac.2021.03.159] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022]
Abstract
This study focuses on the fabrication and characterization of alginate-based films functionalized by incorporating nanostructured lipid carriers (NLCs). The effect of different NLC/alginate mass ratios (R = 0.05, 0.1, 0.2, and 0.35) on the physical, morphological, mechanical, and barrier properties of the calcium-alginate films was evaluated. The addition of the NLCs significantly improved the UV-absorbing properties, without greatly altering their transparent appearance. As the NLC concentration increased, the tensile strength, elastic modulus, and swelling ratio of the films decreased, while their thermal stability, water vapor permeability, and contact angle increased. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images of the films revealed that NLC incorporation led to a more porous internal structure and a rougher surface. Fourier Transform Infrared (FTIR) analysis indicated that there were no new interactions between the calcium-alginate and NLC constituents within the films. Overall, this study shows that NLCs can be successfully incorporated into calcium-alginate films and used to modulate their physicochemical properties. In future, it will be useful to examine the potential of these films to incorporate hydrophobic bioactives such as drugs, nutraceuticals, antimicrobials, antioxidants, and pigments for specific pharmaceutical or food applications.
Collapse
Affiliation(s)
- Neda Karimi Khorrami
- Department of Food Science and Technology, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| | - Mohsen Radi
- Department of Food Science and Technology, Yasooj Branch, Islamic Azad University, Yasooj, Iran; Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran.
| | - Sedigheh Amiri
- Department of Food Science and Technology, Yasooj Branch, Islamic Azad University, Yasooj, Iran; Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran.
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
24
|
Chen IH, Lee TM, Huang CL. Biopolymers Hybrid Particles Used in Dentistry. Gels 2021; 7:gels7010031. [PMID: 33809903 PMCID: PMC8005972 DOI: 10.3390/gels7010031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
This literature review provides an overview of the fabrication and application of biopolymer hybrid particles in dentistry. A total of 95 articles have been included in this review. In the review paper, the common inorganic particles and biopolymers used in dentistry are discussed in general, and detailed examples of inorganic particles (i.e., hydroxyapatite, calcium phosphate, and bioactive glass) and biopolymers such as collagen, gelatin, and chitosan have been drawn from the scientific literature and practical work. Among the included studies, calcium phosphate including hydroxyapatite is the most widely applied for inorganic particles used in dentistry, but bioactive glass is more applicable and multifunctional than hydroxyapatite and is currently used in clinical practice. Today, biopolymer hybrid particles are receiving more attention as novel materials for several applications in dentistry, such as drug delivery systems, bone repair, and periodontal regeneration surgery. The literature published on the biopolymer gel-assisted synthesis of inorganic particles for dentistry is somewhat limited, and therefore, this article focuses on reviewing and discussing the biopolymer hybrid particles used in dentistry.
Collapse
Affiliation(s)
- I-Hao Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Tzer-Min Lee
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- School of Dentistry, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (T.-M.L.); (C.-L.H.); Tel.: +886-6-275-7575 (ext. 5972) (T.-M.L.); +886-7-312-1101 (ext. 2245#12) (C.-L.H.)
| | - Chih-Ling Huang
- Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (T.-M.L.); (C.-L.H.); Tel.: +886-6-275-7575 (ext. 5972) (T.-M.L.); +886-7-312-1101 (ext. 2245#12) (C.-L.H.)
| |
Collapse
|
25
|
Synthesis of Antibacterial Gelatin/Sodium Alginate Sponges and Their Antibacterial Activity. Polymers (Basel) 2020; 12:polym12091926. [PMID: 32858972 PMCID: PMC7564498 DOI: 10.3390/polym12091926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
In the present study, sponges with the antibiotic tetracycline hydrochloride (TCH) loaded into alginate incorporated with gelatin (G/SA) were fabricated. The G/SA sponges were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric (TG) analysis. G/SA sponges show a three-dimensional network structure with high porosity. An excellent swelling behavior and a controlled TCH release performance are observed from G/SA sponges. Moreover, they exhibit good antibacterial activity against both Gram-positive and Gram-negative bacteria.
Collapse
|