1
|
Nyamba I, Sombié CB, Yabré M, Zimé-Diawara H, Yaméogo J, Ouédraogo S, Lechanteur A, Semdé R, Evrard B. Pharmaceutical approaches for enhancing solubility and oral bioavailability of poorly soluble drugs. Eur J Pharm Biopharm 2024; 204:114513. [PMID: 39313163 DOI: 10.1016/j.ejpb.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
High solubility in water and physiological fluids is an indispensable requirement for the pharmacological efficacy of an active pharmaceutical ingredient. Indeed, it is well established that pharmaceutical substances exhibiting limited solubility in water are inclined towards diminished and inconsistent absorption following oral administration, consequently resulting in variability in therapeutic outcomes. The current advancements in combinatorial chemistry and pharmaceutical design have facilitated the creation of drug candidates characterized by increased lipophilicity, elevated molecular size, and reduced aqueous solubility. Undoubtedly, the issue of poorly water-soluble medications has been progressively escalating over recent years. Indeed, 40% of the top 200 oral medications marketed in the United States, 33% of drugs listed in the US pharmacopoeia, 75% of compounds under development and 90% of new chemical entities are insufficiently water-soluble compounds. In order to address this obstacle, formulation scientists employ a variety of approaches, encompassing both physical and chemical methods such as prodrug synthesis, salt formation, solid dispersions formation, hydrotropic substances utilization, solubilizing agents incorporation, cosolvent addition, polymorphism exploration, cocrystal creation, cyclodextrins complexation, lipid formulations, particle size reduction and nanoformulation techniques. Despite the utilization of these diverse approaches, the primary reason for the failure in new drug development persists as the poor aqueous solubility of pharmaceutical compounds. This paper, therefore, delves into the foundational principles that underpin the implementation of various formulation strategies, along with a discussion on the respective advantages and drawbacks associated with each approach. Additionally, a discourse is provided regarding methodological frameworks for making informed decisions on selecting an appropriate formulation strategy to effectively tackle the key challenges posed during the development of a poorly water-soluble drug candidate.
Collapse
Affiliation(s)
- Isaïe Nyamba
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Université de Liège, 4000 Liège, Belgium; Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; Institut Supérieur des Sciences de la Santé (INSSA), Université Nazi Boni, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso.
| | - Charles B Sombié
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Moussa Yabré
- Institut Supérieur des Sciences de la Santé (INSSA), Université Nazi Boni, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
| | - Hermine Zimé-Diawara
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Josias Yaméogo
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Salfo Ouédraogo
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Université de Liège, 4000 Liège, Belgium
| | - Rasmané Semdé
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Université de Liège, 4000 Liège, Belgium
| |
Collapse
|
2
|
Li J, Wang X, Yu D, Zhoujin Y, Wang K. Molecular complexes of drug combinations: A review of cocrystals, salts, coamorphous systems and amorphous solid dispersions. Int J Pharm 2023; 648:123555. [PMID: 37890646 DOI: 10.1016/j.ijpharm.2023.123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
As the advancements in the medical technology and healthcare develop through the years, combinational therapy has evolved to be an important treatment modality in many disease settings, including cancer, cardiovascular disease and infectious diseases. In an effort to alleviate "pill burden" and improve patient compliance, fixed dose combinations (FDCs) have been developed to be used as effective therapeutics. Among all FDCs, the category of drug-drug molecular complexes has been proven an efficient methodology in designing and treating diseases, with many drugs being approved. Among all drug-drug molecular complexes, drug-drug cocrystals, salts, coamorphous systems and solid dispersions have been successfully developed and many have been approved by the FDA. In this review, we dwell deeply into the molecular mechanisms behind the different types of drug-drug molecular complexes, including the key functional groups involved in the intermolecular interactions, the applications of each category of molecular complexes, as well as the advantages and challenges thereof. This comprehensive review provides useful insights into the practical design and manufacture of drug-drug molecular complexes and points out the future direction for the development of new advantageous combinational therapies that benefit more patients.
Collapse
Affiliation(s)
- Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Xiyan Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dongyue Yu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ 08540, United States
| | - Yunping Zhoujin
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kunlin Wang
- BeBetter Med Inc., Guangzhou, 510663, PR China; College of Pharmacy, Jinan University, Guangzhou, 510006, PR China.
| |
Collapse
|
3
|
Yadav D, Savjani J, Savjani K, Kumar A, Patel S. Pharmaceutical Co-crystal of Antiviral Agent Efavirenz with Nicotinamide for the Enhancement of Solubility, Physicochemical Stability, and Oral Bioavailability. AAPS PharmSciTech 2022; 24:7. [PMID: 36447108 DOI: 10.1208/s12249-022-02467-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
The present research work attempted to improve the oral bioavailability of the antiviral drug Efavirenz (EFV) using a pharmaceutical cocrystallization technique. EFV comes under BCS-II and has extremely low water solubility, and results in low oral bioavailability. EFV and nicotinamide (NICO) were selected in a (1:1) stoichiometric ratio and efavirenz nicotinamide cocrystal (ENCOC) was prepared through the liquid-assisted grinding method (LAG). The confirmation of the formation of a new solid phase was done through spectroscopic techniques like Fourier transmission infrared (FTIR), Raman, and 13C solid-state nuclear magnetic resonance (13C ssNMR). Thermal techniques like differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and hot stage microscopy (HSM) illustrated the thermal behavior and melting patterns of ENCOC, EFV, and NICO. The X-ray powder diffraction (XRPD) confirms the formation of a new crystalline phase in ENCOC. The Morphology was determined through scanning electron microscopy (FESEM). The results of saturated solubility studies and in vitro drug release studies exhibited 8.9-fold enhancement in solubility and 2.56-fold enhancement in percentage cumulative drug release. The percentage drug content of ENCOC was found higher than 97% and cocrystal exhibits excellent accelerated stability. The oral bioavailability of EFV (Cmax, 799.08 ng/mL) exhibits significant enhancement after cocrystallization (Cmax, 5597.09 ng/mL) than EFV and Efcure®-200 tablet (2896.21 ng/mL). The current work investigates the scalable and cost-effective method for enhancement of physicochemical stability, solubility, and oral bioavailability of an antiviral agent EFV.
Collapse
Affiliation(s)
- Dattatraya Yadav
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University Ahmedabad, Ahmedabad, Gujarat, India, 382481
| | - Jignasa Savjani
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University Ahmedabad, Ahmedabad, Gujarat, India, 382481.
| | - Ketan Savjani
- Emcure Pharmaceuticals, Gandhinagar, Gujarat, India, 382423
| | - Aakash Kumar
- Department of Pharmacology, Institute of Pharmacy, Nirma University Ahmedabad, Ahmedabad, Gujarat, India, 382481
| | - Snehal Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University Ahmedabad, Ahmedabad, Gujarat, India, 382481
| |
Collapse
|
5
|
Szell PMJ, Lewandowski JR, Blade H, Hughes LP, Nilsson Lill SO, Brown SP. Taming the dynamics in a pharmaceutical by cocrystallization: investigating the impact of the coformer by solid-state NMR. CrystEngComm 2021. [DOI: 10.1039/d1ce01084k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anti-HIV pharmaceutical efavirenz is highly dynamic in its crystalline state, and we show that these dynamics can be tamed through the introduction of a coformer.
Collapse
Affiliation(s)
| | | | - Helen Blade
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Leslie P. Hughes
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Sten O. Nilsson Lill
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Steven P. Brown
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|