1
|
Rahchamandi SYR, Mirhadi E, Gheybi F, Kazemi-Beydokhti A, Jaafari MR, Mostafavi E, Kesharwani P, Sahebkar A, Alavizadeh SH. Engineering carbon-based nanomaterials for the delivery of platinum compounds: An innovative cancer disarming frontier. ENVIRONMENTAL RESEARCH 2024; 262:119933. [PMID: 39278586 DOI: 10.1016/j.envres.2024.119933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Carbon-based nanomaterials have been frequently used as one of the most advanced and fascinating nanocarriers for drug delivery applications due to their unique physicochemical properties. Varying types of carbon nanomaterials (CNMs) including carbon nanotubes, graphene, graphene oxides, carbon nanohorns, fullerenes, carbon nanodots, and carbon nanodiamonds are promising candidates for designing novel systems to deliver platinum compounds. CNMs modification with various moieties renders vast bio-applications in the area of targeted and organelle-specific cancer therapy. This review featured an updated and concise summarizations of various types of CNMs, their synthesis, advantages and disadvantages including potential bio-toxicity for biomedical applications. The therapeutic utility of CNMs and their efficacy have been noticed and for the first time, this review addressed CNMs-focused applications on the delivery of platinum-derivatives to the cancer site. Collectively, the contents of this review will assist researchers to focus on the possible fabrication, bio-functionalization and designing methods of CNMs to the further development of their future biomedical implementations.
Collapse
Affiliation(s)
- Seyedeh Yasaman Rahnamaei Rahchamandi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Kazemi-Beydokhti
- Department of Chemical Engineering, School of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Chernysheva MG, Shen T, Badun GA, Mikheev IV, Chaschin IS, Tsygankov YM, Britikov DV, Hugaev GA, Bakuleva NP. Tritium-Labeled Nanodiamonds as an Instrument to Analyze Bioprosthetic Valve Coatings: A Case of Using a Nanodiamond Containing Coating on a Pork Aorta. Molecules 2024; 29:3078. [PMID: 38999030 PMCID: PMC11243069 DOI: 10.3390/molecules29133078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Coatings with xenogenic materials, made of detonation nanodiamonds, provide additional strength and increase elasticity. A functionally developed surface of nanodiamonds makes it possible to apply antibiotics. Previous experiments show the stability of such coatings; however, studies on stability in the bloodstream and calcification of the material in natural conditions have yet to be conducted. Tritium-labeled nanodiamonds (negative and positive) were obtained by the tritium activation method and used to develop coatings for a pork aorta to analyze their stability in a pig's bloodstream using a radiotracer technique. A chitosan layer was applied from a solution of carbonic acid under high-pressure conditions to prevent calcification. The obtained materials were used to prepare a porcine conduit, which was surgically stitched inside the pig's aorta for four months. The aorta samples, including nanodiamond-coated and control samples, were analyzed for nanodiamond content and calcium, using the radiotracer and ICP-AES methods. A histological analysis of the materials was also performed. The obtained coatings illustrate a high in vivo stability and low levels of calcification for all types of nanodiamonds. Even though we did not use additional antibiotics in this case, the development of infection was not observed for negatively charged nanodiamonds, opening up prospects for their use in developing coatings.
Collapse
Affiliation(s)
- Maria G. Chernysheva
- Chemistry Department, M.V. Lomonosov Moscow State University, 3, bld. 1, Leninskie Gory, Moscow 119991, Russia; (T.S.); (G.A.B.); (I.V.M.)
| | - Tianyi Shen
- Chemistry Department, M.V. Lomonosov Moscow State University, 3, bld. 1, Leninskie Gory, Moscow 119991, Russia; (T.S.); (G.A.B.); (I.V.M.)
| | - Gennadii A. Badun
- Chemistry Department, M.V. Lomonosov Moscow State University, 3, bld. 1, Leninskie Gory, Moscow 119991, Russia; (T.S.); (G.A.B.); (I.V.M.)
| | - Ivan V. Mikheev
- Chemistry Department, M.V. Lomonosov Moscow State University, 3, bld. 1, Leninskie Gory, Moscow 119991, Russia; (T.S.); (G.A.B.); (I.V.M.)
| | - Ivan S. Chaschin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1, Vavilova St., Moscow 119334, Russia;
- A. N. Bakulev Scientific Center for Cardiovascular Surgery, 135, Rublevskoe Sh., Moscow 121552, Russia; (Y.M.T.); (D.V.B.); (G.A.H.); (N.P.B.)
| | - Yuriy M. Tsygankov
- A. N. Bakulev Scientific Center for Cardiovascular Surgery, 135, Rublevskoe Sh., Moscow 121552, Russia; (Y.M.T.); (D.V.B.); (G.A.H.); (N.P.B.)
| | - Dmitrii V. Britikov
- A. N. Bakulev Scientific Center for Cardiovascular Surgery, 135, Rublevskoe Sh., Moscow 121552, Russia; (Y.M.T.); (D.V.B.); (G.A.H.); (N.P.B.)
| | - Georgii A. Hugaev
- A. N. Bakulev Scientific Center for Cardiovascular Surgery, 135, Rublevskoe Sh., Moscow 121552, Russia; (Y.M.T.); (D.V.B.); (G.A.H.); (N.P.B.)
| | - Natalia P. Bakuleva
- A. N. Bakulev Scientific Center for Cardiovascular Surgery, 135, Rublevskoe Sh., Moscow 121552, Russia; (Y.M.T.); (D.V.B.); (G.A.H.); (N.P.B.)
| |
Collapse
|
3
|
Rikiyama K, Maehara N, Abe H, Nishimura Y, Yukawa H, Kaminaga K, Igarashi R, Osada K. Quantification of Poly(ethylene glycol) Crowding on Nanodiamonds toward Quantum Biosensor for Improved Prevention Effects on Protein Adsorption and Lung Accumulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9471-9480. [PMID: 38649324 DOI: 10.1021/acs.langmuir.3c03988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Nanometer-sized diamonds (NDs) containing nitrogen vacancy centers have garnered significant attention as potential quantum sensors for reading various types of physicochemical information in vitro and in vivo. However, NDs intrinsically aggregate when placed in biological environments, hampering their sensing capacities. To address this issue, the grafting of hydrophilic polymers onto the surface of NDs has been demonstrated considering their excellent ability to prevent protein adsorption. To this end, crowding of the grafted chains plays a crucial role because it is directly associated with the antiadsorption effect of proteins; however, its quantitative evaluation has not been reported previously. In this study, we graft poly(ethylene glycol) (PEG) with various molecular weights onto NDs, determine their crowding using a gas adsorption technique, and disclose the cross-correlation between the pH in the grafting reaction, crowding density, molecular weight, and the prevention effect on protein adsorption. PEG-grafted NDs exhibit a pronounced effect on the prevention of lung accumulation after intravenous injection in mice. PEG crowding was compared to that calculated by using a diameter determined by dynamic light scattering (DLS) assuming a sphere.
Collapse
Affiliation(s)
- Kazuaki Rikiyama
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nanami Maehara
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo, Tokyo 112-8681, Japan
| | - Hiroshi Abe
- Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yushi Nishimura
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inageku, Chiba 263-8522, Japan
| | - Kiichi Kaminaga
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kensuke Osada
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
4
|
Cui J, Hu B, Fu Y, Xu Z, Li Y. pH-Sensitive nanodiamond co-delivery of retinal and doxorubicin boosts breast cancer chemotherapy. RSC Adv 2023; 13:27403-27414. [PMID: 37711368 PMCID: PMC10498152 DOI: 10.1039/d3ra03907b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Herein for the first time we take the advantage of nanodiamonds (NDs) to covalently immobilize all-trans retinal (NPA) by an imine bond, allowing pH-mediated drug release. DOX is then physically adsorbed onto NPA to form an NPA@D co-loaded double drug in the sodium citrate medium, which is also susceptible to pH-triggered DOX dissociation. The cytotoxicity results showed that NPA@D could markedly inhibit the growth of DOX-sensitive MCF-7 cells in a synergetic way compared to the NP@D system of single-loaded DOX, while NPA basically showed no cytotoxicity and weak inhibition of migration. In addition, NPA@D can overcome the drug resistance of MCF-7/ADR cells, indicating that this nanodrug could evade the pumping of DOX by drug-resistant cells, but free DOX is nearly ineffective against these cells. More importantly, the fluorescence imaging of tumor-bearing mice in vivo and ex vivo demonstrated that the NPA@D was mainly accumulated in the tumor site rather than any other organ by intraperitoneal injection after 24 h, in which the fluorescence intensity of NPA@D was 19 times that of the free DOX, suggesting that a far reduced off-target effect and side effects would be expected. Therefore, this work presents a new paradigm for improving chemotherapy and reversing drug resistance using the ND platform for co-delivery of DOX and ATR.
Collapse
Affiliation(s)
- Jicheng Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 P. R. China
| | - Bo Hu
- China Institute for Radiation Protection Taiyuan 030006 P. R. China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University Taiyuan 030006 China
| | - Zhengkun Xu
- Faculty of Science, McMaster University Hamilton L8S 4K1 ON Canada
| | - Yingqi Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 PR China
| |
Collapse
|
5
|
Advanced Drug Delivery Systems for Renal Disorders. Gels 2023; 9:gels9020115. [PMID: 36826285 PMCID: PMC9956928 DOI: 10.3390/gels9020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Kidney disease management and treatment are currently causing a substantial global burden. The kidneys are the most important organs in the human urinary system, selectively filtering blood and metabolic waste into urine via the renal glomerulus. Based on charge and/or molecule size, the glomerular filtration apparatus acts as a barrier to therapeutic substances. Therefore, drug distribution to the kidneys is challenging, resulting in therapy failure in a variety of renal illnesses. Hence, different approaches to improve drug delivery across the glomerulus filtration barrier are being investigated. Nanotechnology in medicine has the potential to have a significant impact on human health, from illness prevention to diagnosis and treatment. Nanomaterials with various physicochemical properties, including size, charge, surface and shape, with unique biological attributes, such as low cytotoxicity, high cellular internalization and controllable biodistribution and pharmacokinetics, have demonstrated promising potential in renal therapy. Different types of nanosystems have been employed to deliver drugs to the kidneys. This review highlights the features of the nanomaterials, including the nanoparticles and corresponding hydrogels, in overcoming various barriers of drug delivery to the kidneys. The most common delivery sites and strategies of kidney-targeted drug delivery systems are also discussed.
Collapse
|
6
|
Sattar R, Shahzad F, Ishaq T, Mukhtar R, Naz A. Nano‐Drug Carriers: A Potential Approach towards Drug Delivery Methods. ChemistrySelect 2022. [DOI: 10.1002/slct.202200884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rabia Sattar
- Department of Chemistry The University of Lahore Sargodha Campus 40100 Sargodha Pakistan
| | - Faisal Shahzad
- Department of Chemistry The University of Lahore Sargodha Campus 40100 Sargodha Pakistan
| | - Tehmeena Ishaq
- Department of Chemistry The University of Lahore Sargodha Campus 40100 Sargodha Pakistan
| | - Rubina Mukhtar
- Department of Chemistry The University of Lahore Sargodha Campus 40100 Sargodha Pakistan
| | - Asima Naz
- Department of Chemistry Mirpur University of Science & Technology (MUST) 10250 Mirpur, Azad Jammu & Kashmir Pakistan
| |
Collapse
|
7
|
Ranasinghe JC, Jain A, Wu W, Zhang K, Wang Z, Huang S. Engineered 2D materials for optical bioimaging and path toward therapy and tissue engineering. JOURNAL OF MATERIALS RESEARCH 2022; 37:1689-1713. [PMID: 35615304 PMCID: PMC9122553 DOI: 10.1557/s43578-022-00591-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) layered materials as a new class of nanomaterial are characterized by a list of exotic properties. These layered materials are investigated widely in several biomedical applications. A comprehensive understanding of the state-of-the-art developments of 2D materials designed for multiple nanoplatforms will aid researchers in various fields to broaden the scope of biomedical applications. Here, we review the advances in 2D material-based biomedical applications. First, we introduce the classification and properties of 2D materials. Next, we summarize surface and structural engineering methods of 2D materials where we discuss surface functionalization, defect, and strain engineering, and creating heterostructures based on layered materials for biomedical applications. After that, we discuss different biomedical applications. Then, we briefly introduced the emerging role of machine learning (ML) as a technological advancement to boost biomedical platforms. Finally, the current challenges, opportunities, and prospects on 2D materials in biomedical applications are discussed. Graphical abstract
Collapse
Affiliation(s)
- Jeewan C. Ranasinghe
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Arpit Jain
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Wenjing Wu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Kunyan Zhang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Ziyang Wang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Shengxi Huang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
8
|
Kazakov AG, Babenya JS, Ivanova MK, Vinokurov SE, Myasoedov BF. Study of 90Y Sorption with Nanodiamonds as Potential Carriers in the Radiopharmaceutical Composition. RADIOCHEMISTRY 2022. [DOI: 10.1134/s1066362222010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Veselov VV, Nosyrev AE, Jicsinszky L, Alyautdin RN, Cravotto G. Targeted Delivery Methods for Anticancer Drugs. Cancers (Basel) 2022; 14:622. [PMID: 35158888 PMCID: PMC8833699 DOI: 10.3390/cancers14030622] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Several drug-delivery systems have been reported on and often successfully applied in cancer therapy. Cell-targeted delivery can reduce the overall toxicity of cytotoxic drugs and increase their effectiveness and selectivity. Besides traditional liposomal and micellar formulations, various nanocarrier systems have recently become the focus of developmental interest. This review discusses the preparation and targeting techniques as well as the properties of several liposome-, micelle-, solid-lipid nanoparticle-, dendrimer-, gold-, and magnetic-nanoparticle-based delivery systems. Approaches for targeted drug delivery and systems for drug release under a range of stimuli are also discussed.
Collapse
Affiliation(s)
- Valery V. Veselov
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - Alexander E. Nosyrev
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - László Jicsinszky
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| | - Renad N. Alyautdin
- Department of Pharmacology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia
| |
Collapse
|
10
|
Sriram G, Bendre A, Altalhi T, Jung HY, Hegde G, Kurkuri M. Surface engineering of silica based materials with Ni-Fe layered double hydroxide for the efficient removal of methyl orange: Isotherms, kinetics, mechanism and high selectivity studies. CHEMOSPHERE 2022; 287:131976. [PMID: 34438207 DOI: 10.1016/j.chemosphere.2021.131976] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Herein, low-cost diatomite (DE) and bentonite (BE) materials were surface modified with Ni-Fe layered double hydroxide (LDHs) (represented as NFD and NFB respectively), using a simple co-precipitation procedure for the removal of methyl orange (MO) dye from water. The adsorbents of both before and after MO adsorption have been studied by XRD, N2 adsorption-desorption isotherm, FTIR, FESEM-EDX and XPS characterization. The zeta potential analysis was used to observe the surface charge of adsorbents within the pH ranges of 4-10. The MO removal efficiency was significantly improved after LDHs modification, showing a 94.7% and 92.6% efficiency for NFD and NFB at pH 6, respectively. Whereas bare DE and BE have shown removal efficiency of 15.5% and 4.9% respectively. The maximum adsorption capacities of NFD and NFB using the Langmuir isotherm model were found to be 246.9 mgg-1 and 215.9 mgg-1 respectively. The designed NFD showed high selectivity towards anionic-based dyes from water and also the effect of salts shows the dye removal percentage was increased and decreased for the addition of Na2SO4 and NaCl, respectively. The reusability of NFD and NFB have been studied for a maximum of five cycles and they can remove MO up to four cycles. Therefore, the designed adsorbents can be very effective towards the removal of MO from water and they may be useful for dye-based wastewater treatment.
Collapse
Affiliation(s)
- Ganesan Sriram
- Centre for Nano and Material Sciences, JAIN University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Akhilesh Bendre
- Centre for Nano and Material Sciences, JAIN University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Tariq Altalhi
- Department of Chemistry, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Gurumurthy Hegde
- Centre for Nano-materials and Displays, B.M.S. College of Engineering, Basavanagudi, Bengaluru, 560019, India
| | - Mahaveer Kurkuri
- Centre for Nano and Material Sciences, JAIN University, Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
11
|
Functionalization of mesoporous MCM-41 for the delivery of curcumin as an anti-inflammatory therapy. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.103417] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
A Review on Synthesis Methods of Phyllosilicate- and Graphene-Filled Composite Hydrogels. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review discusses, in brief, the various synthetic methods of two widely-used nanofillers; phyllosilicate and graphene. Both are 2D fillers introduced into hydrogel matrices to achieve mechanical robustness and water uptake behavior. Both the fillers are inserted by physical and chemical gelation methods where most of the chemical gelation, i.e., covalent approaches, results in better physical properties compared to their physical gels. Physical gels occur due to supramolecular assembly, van der Waals interactions, electrostatic interactions, hydrophobic associations, and H-bonding. For chemical gelation, in situ radical triggered gelation mostly occurs.
Collapse
|
13
|
Shellaiah M, Sun KW. Diamond-Based Electrodes for Detection of Metal Ions and Anions. NANOMATERIALS 2021; 12:nano12010064. [PMID: 35010014 PMCID: PMC8746347 DOI: 10.3390/nano12010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Diamond electrodes have long been a well-known candidate in electrochemical analyte detection. Nano- and micro-level modifications on the diamond electrodes can lead to diverse analytical applications. Doping of crystalline diamond allows the fabrication of suitable electrodes towards specific analyte monitoring. In particular, boron-doped diamond (BDD) electrodes have been reported for metal ions, anions, biomolecules, drugs, beverage hazards, pesticides, organic molecules, dyes, growth stimulant, etc., with exceptional performance in discriminations. Therefore, numerous reviews on the diamond electrode-based sensory utilities towards the specified analyte quantifications were published by many researchers. However, reviews on the nanodiamond-based electrodes for metal ions and anions are still not readily available nowadays. To advance the development of diamond electrodes towards the detection of diverse metal ions and anions, it is essential to provide clear and focused information on the diamond electrode synthesis, structure, and electrical properties. This review provides indispensable information on the diamond-based electrodes towards the determination of metal ions and anions.
Collapse
|
14
|
Bilal M, Cheng H, González-González RB, Parra-Saldívar R, Iqbal HM. Bio-applications and biotechnological applications of nanodiamonds. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2021. [DOI: 10.1016/j.jmrt.2021.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Bhat S, Uthappa UT, Altalhi T, Jung HY, Kurkuri MD. Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review. ACS Biomater Sci Eng 2021; 8:4039-4076. [PMID: 34499471 DOI: 10.1021/acsbiomaterials.1c00438] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomaterials have been widely used in tissue engineering applications at an increasing rate in recent years. The increased clinical demand for safe scaffolds, as well as the diversity and availability of biomaterials, has sparked rapid interest in fabricating diverse scaffolds to make significant progress in tissue engineering. Hydroxyapatite (HAP) has drawn substantial attention in recent years owing to its excellent physical, chemical, and biological properties and facile adaptable surface functionalization with other innumerable essential materials. This focused review spotlights a brief introduction on HAP, scope, a historical outline, basic structural features/properties, various synthetic strategies, and their scientific applications concentrating on functionalized HAP in the diverse area of tissue engineering fields such as bone, skin, periodontal, bone tissue fixation, cartilage, blood vessel, liver, tendon/ligament, and corneal are emphasized. Besides clinical translation aspects, the future challenges and prospects of HAP based biomaterials involved in tissue engineering are also discussed. Furthermore, it is expected that researchers may find this review expedient in gaining an overall understanding of the latest advancement of HAP based biomaterials.
Collapse
Affiliation(s)
- Shrinath Bhat
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - U T Uthappa
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India.,Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| |
Collapse
|
16
|
Berdichevskiy GM, Vasina LV, Ageev SV, Meshcheriakov AA, Galkin MA, Ishmukhametov RR, Nashchekin AV, Kirilenko DA, Petrov AV, Martynova SD, Semenov KN, Sharoyko VV. A comprehensive study of biocompatibility of detonation nanodiamonds. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Cui X, Deng X, Liang Z, Lu J, Shao L, Wang X, Jia F, Pan Z, Hu Q, Xiao X, Wu Y, Sheng W. Multicomponent-assembled nanodiamond hybrids for targeted and imaging guided triple-negative breast cancer therapy via a ternary collaborative strategy. Biomater Sci 2021; 9:3838-3850. [PMID: 33885068 DOI: 10.1039/d1bm00283j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Uniting combinational strategies has been confirmed to be a robust choice for high-performance cancer treatment due to their abilities to overcome tumor heterogeneity and complexity. However, the development of a simple, effective, and multifunctional theranostics nanoplatform still remains a challenge. In this study, we integrated multicomponent hyaluronic acid (HA), protamine (PS), nanodiamonds (NDs), curcumin (Cur), and IR780 into a single nanoplatform (denoted as HPNDIC) based on the combination of hydrophobic and electrostatic noncovalent interactions for dual-modal fluorescence/photoacoustic imaging guided ternary collaborative Cur/photothermal/photodynamic combination therapy of triple-negative breast cancer (TNBC). A two-step coordination assembly strategy was utilized to realize this purpose. In the first step, PS was utilized to modify the NDs clusters to form positively charged PS@NDs (PND) and the simultaneous encapsulation of the natural small-molecule drug Cur and the photosensitive small-molecule IR780 (PNDIC). Second, HA was adsorbed onto the outer surface of the PNDIC through charge complexation for endowing a tumor-targeting ability (HPNDIC). The resulting HPNDIC had a uniform size, high drug-loading ability, and excellent colloidal stability. It was found that under the near-infrared irradiation condition, IR780 could be triggered to exhibit both PTT/PDT dual-pattern therapy effects, leading to an enhanced therapy efficiency of Cur both in vitro and in vivo with good biocompatibility. Due to the intrinsic imaging property of IR780, the biodistribution and accumulation behavior of HPNDIC in vivo could be monitored by dual-modal fluorescence/photoacoustic imaging. Taken together, our current work demonstrated the assembly of a NDs-based multicomponent theranostic platform for dual-modal fluorescence/photoacoustic imaging guided triple-collaborative Cur/photothermal/photodynamic against TNBC.
Collapse
Affiliation(s)
- Xinyue Cui
- The Faculty of Environment and Life, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P.R. China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xiongwei Deng
- The Faculty of Environment and Life, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P.R. China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Zhaoyuan Liang
- The Faculty of Environment and Life, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P.R. China.
| | - Jianqing Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Leihou Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Fan Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Zian Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Qin Hu
- The Faculty of Environment and Life, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P.R. China.
| | - Xiangqian Xiao
- The Faculty of Environment and Life, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P.R. China.
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Wang Sheng
- The Faculty of Environment and Life, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P.R. China.
| |
Collapse
|
18
|
Hassanzadeh P. The capabilities of nanoelectronic 2-D materials for bio-inspired computing and drug delivery indicate their significance in modern drug design. Life Sci 2021; 279:119272. [PMID: 33631171 DOI: 10.1016/j.lfs.2021.119272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Remarkable advancements in the computational techniques and nanoelectronics have attracted considerable interests for development of highly-sophisticated materials (Ms) including the theranostics with optimal characteristics and innovative delivery systems. Analyzing the huge amounts of multivariate data and solving the newly-emerged complicated problems including the healthcare-related ones have created increasing demands for improving the computational speed and minimizing the consumption of energy. Shifting towards the non-von Neumann approaches enables performing specific computational tasks and optimizing the processing of signals. Besides usefulness for neuromorphic computing and increasing the efficiency of computation energy, 2-D electronic Ms are capable of optical sensing with ultra-fast and ultra-sensitive responses, mimicking the neurons, detection of pathogens or biomolecules, and prediction of the progression of diseases, assessment of the pharmacokinetics/pharmacodynamics of therapeutic candidates, mimicking the dynamics of the release of neurotransmitters or fluxes of ions that might provide a deeper knowledge about the computations and information flow in the brain, and development of more effective treatment protocols with improved outcomes. 2-D Ms appear as the major components of the next-generation electronically-enabled devices for highly-advanced computations, bio-imaging, diagnostics, tissue engineering, and designing smart systems for site-specific delivery of therapeutics that might result in the reduced adverse effects of drugs and improved patient compliance. This manuscript highlights the significance of 2-D Ms in the neuromorphic computing, optimizing the energy efficiency of the multi-step computations, providing novel architectures or multi-functional systems, improved performance of a variety of devices and bio-inspired functionalities, and delivery of theranostics.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| |
Collapse
|
19
|
Bikiaris ND, Ainali NM, Christodoulou E, Kostoglou M, Kehagias T, Papasouli E, Koukaras EN, Nanaki SG. Dissolution Enhancement and Controlled Release of Paclitaxel Drug via a Hybrid Nanocarrier Based on mPEG-PCL Amphiphilic Copolymer and Fe-BTC Porous Metal-Organic Framework. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2490. [PMID: 33322372 PMCID: PMC7763675 DOI: 10.3390/nano10122490] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023]
Abstract
In the present work, the porous metal-organic framework (MOF) Basolite®F300 (Fe-BTC) was tested as a potential drug-releasing depot to enhance the solubility of the anticancer drug paclitaxel (PTX) and to prepare controlled release formulations after its encapsulation in amphiphilic methoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) nanoparticles. Investigation revealed that drug adsorption in Fe-BTC reached approximately 40%, a relatively high level, and also led to an overall drug amorphization as confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The dissolution rate of PTX-loaded MOF was substantially enhanced achieving a complete (100%) release within four days, while the neat drug only reached a 13% maximum rate (3-4 days). This PTX-Fe-BTC nanocomposite was further encapsulated into a mPEG-PCL matrix, a typical aliphatic amphiphilic copolyester synthesized in our lab, whose biocompatibility was validated by in vitro cytotoxicity tests toward human umbilical vein endothelial cells (HUVEC). Encapsulation was performed according to the solid-in-oil-in-water emulsion/solvent evaporation technique, resulting in nanoparticles of about 143 nm, slightly larger of those prepared without the pre-adsorption of PTX on Fe-BTC (138 nm, respectively). Transmission electron microscopy (TEM) imaging revealed that spherical nanoparticles with embedded PTX-loaded Fe-BTC nanoparticles were indeed fabricated, with sizes ranging from 80 to 150 nm. Regions of the composite Fe-BTC-PTX system in the infrared (IR) spectrum are identified as signatures of the drug-MOF interaction. The dissolution profiles of all nanoparticles showed an initial burst release, attributed to the drug amount located at the nanoparticles surface or close to it, followed by a steadily and controlled release. This is corroborated by computational analysis that reveals that PTX attaches effectively to Fe-BTC building blocks, but its relatively large size limits diffusion through crystalline regions of Fe-BTC. The dissolution behaviour can be described through a bimodal diffusivity model. The nanoparticles studied could serve as potential chemotherapeutic candidates for PTX delivery.
Collapse
Affiliation(s)
- Nikolaos D. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (N.D.B.); (N.M.A.); (E.C.)
| | - Nina Maria Ainali
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (N.D.B.); (N.M.A.); (E.C.)
| | - Evi Christodoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (N.D.B.); (N.M.A.); (E.C.)
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece;
| | - Thomas Kehagias
- Laboratory of Electron Microscopy, Department of Physics, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece;
| | - Emilia Papasouli
- Laboratory of Quantum and Computational Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (E.P.); (E.N.K.)
| | - Emmanuel N. Koukaras
- Laboratory of Quantum and Computational Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (E.P.); (E.N.K.)
| | - Stavroula G. Nanaki
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (N.D.B.); (N.M.A.); (E.C.)
| |
Collapse
|