1
|
Salgueiro MJ, Portillo M, Tesán F, Nicoud M, Medina V, Moretton M, Chiappetta D, Zubillaga M. Design and development of nanoprobes radiolabelled with 99mTc for the diagnosis and monitoring of therapeutic interventions in oncology preclinical research. EJNMMI Radiopharm Chem 2024; 9:74. [PMID: 39470937 PMCID: PMC11522242 DOI: 10.1186/s41181-024-00300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/19/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND Previous studies employing polymeric micelles and molecular imaging for in vivo nanosystem characterization have led to the development of radionanoprobes (RNPs) designed for diagnosing and monitoring therapeutic interventions in preclinical oncology research, specifically within breast and colon cancer models. These models exhibit high GLUT1 expression on tumor cells and VEGFR expression on the tumor vasculature. We aimed to enhance the tumor-targeting specificity of these RNPs by functionalizing micelles with glucose and bevacizumab. The choice of 99mTc to label the nanoprobes is based on its availability and that direct labeling method is a widespread strategy to prepare radiopharmaceuticals using cold reagents and a 99Mo/99mTc generator. Soluplus® is an attractive polymer for synthesizing micelles that also allows their functionalization. With all the above, the objective of this work was to design, develop and characterize nanoprobes based on polymeric micelles and radiolabeled with 99mTc for the characterization of biological processes associated to the diagnosis, prognosis and monitoring of animal models of breast and colon cancer in preclinical research using molecular images. RESULTS Four RNPs ([99mTc]Tc-Soluplus®, [99mTc]Tc-Soluplus®+TPGS, [99mTc]Tc-Soluplus®+glucose and [99mTc]Tc-Soluplus®+bevacizumab) were produced with high radiochemical purity (> 95% in all cases) and stability in murine serum for up to 3 h. The RNPs maintained the 100 nm size of the Soluplus® polymeric micelles even when they were functionalized and labeled with 99mTc. The image acquisition protocol enabled the visualization of tumor uptake in two cancer experimental models using the assigned RNPs. In vivo biological characterization showed signal-to-background ratios of 1.7 ± 0.03 for [99mTc]Tc-Soluplus®+TPGS, 1.8 ± 0.02 for [99mTc]Tc-Soluplus®, and 2.3 ± 0.02 for [99mTc]Tc-Soluplus®+glucose in the breast cancer model, and 1.8 ± 0.04 for [99mTc]Tc-Soluplus® and 3.7 ± 0.07 for [99mTc]Tc-Soluplus®+bevacizumab in the colon cancer model. Ex vivo biodistribution, showed that the uptake of the tumors, regardless of the model, is < 2% IA/g while the blood activity concentration is higher, suggesting that the enhanced permeability and retention effect (EPR) would be one of the mechanisms involved in imaging tumors in addition to the active targeting of RNPs. CONCLUSIONS Soluplus®-based polymeric micelles provide a promising nanotechnological platform for the development of RNPs. The functionalization with glucose and bevacizumab enhances tumor specificity enabling effective imaging and monitoring of cancer in animal models.
Collapse
Affiliation(s)
- María Jimena Salgueiro
- Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 PB , Buenos Aires (1113), Argentina.
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Mariano Portillo
- Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 PB , Buenos Aires (1113), Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fiorella Tesán
- Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 PB , Buenos Aires (1113), Argentina
| | - Melisa Nicoud
- Laboratory of Tumor Biology and Inflammation, Biomedical Research Institute (BIOMED), Faculty of Medical Sciences, Pontifical Catholic University of Argentina, (UCA-CONICET), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Vanina Medina
- Laboratory of Tumor Biology and Inflammation, Biomedical Research Institute (BIOMED), Faculty of Medical Sciences, Pontifical Catholic University of Argentina, (UCA-CONICET), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcela Moretton
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Chiappetta
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcela Zubillaga
- Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 PB , Buenos Aires (1113), Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Santander Plantamura YA, Allo M, Riedel J, Fuentes P, Riesco AS, Bernabeu E, Garcés M, Evelson P, Gorzalczany S, Carranza A, Höcht C, Chiappetta D. Development of a new micellar formulation of carvedilol and curcumin to enhance blood pressure reduction in a spontaneously hypertensive rat model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03537-2. [PMID: 39422748 DOI: 10.1007/s00210-024-03537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Cardiovascular diseases remain a leading cause of morbidity and mortality worldwide, requiring innovative therapeutic strategies. This project explores a nano-pharmaceutical approach to enhance the efficacy of cardiovascular drugs, focusing on carvedilol and curcumin. These agents, known for their potential cardiovascular benefits, are encapsulated within Soluplus® micelles to form a novel drug delivery system. The novelty of this formulation lies in its ability to significantly improve the solubility of both carvedilol and curcumin, which have traditionally been limited by their hydrophobic nature. By utilizing Soluplus® micelles, we have developed a unique delivery system that optimizes the therapeutic potential of both drugs. The nanomicelles were meticulously characterized for drug loading, size distribution, and morphological features. The carvedilol and curcumin release patterns were investigated, revealing sustained and controlled release profiles. Additionally, the antioxidant capacity of the micellar formulation was evaluated, demonstrating the preservation of curcumin's antioxidative properties. In vivo studies using spontaneously hypertensive male rats explored the pharmacokinetics and hemodynamic effects of the nanomicellar system. These results indicated successful encapsulation of both drugs without altering their plasma profiles. Furthermore, the administration of carvedilol and curcumin micelles exhibited a more significant reduction in mean arterial pressure compared to individual drug administration, suggesting a potential synergistic effect. In conclusion, this nano-pharmaceutical approach offers a promising avenue for cardiovascular therapy, providing a platform for combined drug delivery and potential synergistic effects. The optimized formulation could lead to improved patient outcomes and enhanced cardiovascular health.
Collapse
Grants
- UBACYT 200201301-00547BA Universidad de Buenos Aires, Argentina
- UBACYT 200201301-00547BA Universidad de Buenos Aires, Argentina
- UBACYT 200201301-00547BA Universidad de Buenos Aires, Argentina
- UBACYT 200201301-00547BA Universidad de Buenos Aires, Argentina
- UBACYT 200201301-00547BA Universidad de Buenos Aires, Argentina
- UBACYT 200201301-00547BA Universidad de Buenos Aires, Argentina
- UBACYT 200201301-00547BA Universidad de Buenos Aires, Argentina
- UBACYT 200201301-00547BA Universidad de Buenos Aires, Argentina
- UBACYT 200201301-00547BA Universidad de Buenos Aires, Argentina
- UBACYT 200201301-00547BA Universidad de Buenos Aires, Argentina
Collapse
Affiliation(s)
- Yanina Alejandra Santander Plantamura
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Buenos Aires, Argentina.
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Edo. de México, México.
| | - Miguel Allo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Jennifer Riedel
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina
| | - Pedro Fuentes
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina
| | - Ana Sol Riesco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Ezequiel Bernabeu
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina
- Universidad de Buenos Aires, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentina
| | - Mariana Garcés
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Química General E Inorgánica, Buenos Aires, Argentina
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Química General E Inorgánica, Buenos Aires, Argentina
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Susana Gorzalczany
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Andrea Carranza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Christian Höcht
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Buenos Aires, Argentina
- Universidad de Buenos Aires, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentina
| | - Diego Chiappetta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina
- Universidad de Buenos Aires, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentina
| |
Collapse
|
3
|
Zhang L, Li X, Yue G, Guo L, Hu Y, Cui Q, Wang J, Tang J, Liu H. Nanodrugs systems for therapy and diagnosis of esophageal cancer. Front Bioeng Biotechnol 2023; 11:1233476. [PMID: 37520291 PMCID: PMC10373894 DOI: 10.3389/fbioe.2023.1233476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
With the increasing incidence of esophageal cancer, its diagnosis and treatment have become one of the key issues in medical research today. However, the current diagnostic and treatment methods face many unresolved issues, such as low accuracy of early diagnosis, painful treatment process for patients, and high recurrence rate after recovery. Therefore, new methods for the diagnosis and treatment of esophageal cancer need to be further explored, and the rapid development of nanomaterials has brought new ideas for solving this problem. Nanomaterials used as drugs or drug delivery systems possess several advantages, such as high drug capacity, adjustably specific targeting capability, and stable structure, which endow nanomaterials great application potential in cancer therapy. However, even though the nanomaterials have been widely used in cancer therapy, there are still few reviews on their application in esophageal cancer, and systematical overview and analysis are deficient. Herein, we overviewed the application of nanodrug systems in therapy and diagnosis of esophageal cancer and summarized some representative case of their application in diagnosis, chemotherapy, targeted drug, radiotherapy, immunity, surgery and new therapeutic method of esophageal cancer. In addition, the nanomaterials used for therapy of esophageal cancer complications, esophageal stenosis or obstruction and oesophagitis, are also listed here. Finally, the challenge and the future of nanomaterials used in cancer therapy were discussed.
Collapse
Affiliation(s)
- Lihan Zhang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xing Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Guangxing Yue
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lihao Guo
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, China
| | - Yanhui Hu
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Qingli Cui
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jia Wang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jingwen Tang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Huaimin Liu
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Radeva L, Yordanov Y, Spassova I, Kovacheva D, Tzankova V, Yoncheva K. Double-Loaded Doxorubicin/Resveratrol Polymeric Micelles Providing Low Toxicity on Cardiac Cells and Enhanced Cytotoxicity on Lymphoma Cells. Pharmaceutics 2023; 15:pharmaceutics15041287. [PMID: 37111772 PMCID: PMC10143567 DOI: 10.3390/pharmaceutics15041287] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The anthracycline antibiotic doxorubicin is a well-known antitumour agent, however its cardiotoxicity is a significant obstacle to therapy. The aim of the present study was to improve the safety of doxorubicin through its simultaneous encapsulation with a cardioprotective agent (resveratrol) in Pluronic micelles. The formation and double-loading of the micelles was performed via the film hydration method. Infrared spectroscopy proved the successful incorporation of both drugs. X-ray diffraction analyses revealed that resveratrol was loaded in the core, whereas doxorubicin was included in the shell. The double-loaded micelles were characterised by a small diameter (26 nm) and narrow size distribution, which is beneficial for enhanced permeability and retention effects. The in vitro dissolution tests showed that the release of doxorubicin depended on the pH of the medium and was faster than that of resveratrol. In vitro studies on cardioblasts showed the opportunity to reduce the cytotoxicity of doxorubicin through the presence of resveratrol in double-loaded micelles. Higher cardioprotection was observed when the cells were treated with the double-loaded micelles compared with referent solutions with equal concentrations of both drugs. In parallel, treatments of L5178 lymphoma cells with the double-loaded micelles revealed that the cytotoxic effect of doxorubicin was enhanced. Thus, the study demonstrated that the simultaneous delivery of doxorubicin and resveratrol via the micellar system enabled the cytotoxicity of doxorubicin in lymphoma cells and lowered its cardiotoxicity in cardiac cells.
Collapse
Affiliation(s)
- Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Yordan Yordanov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Virginia Tzankova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | | |
Collapse
|
5
|
Song X, Feng Z, Peng Y, Yu S, Du X, Huang P, Wang W, Xing J. Nanogels co-loading paclitaxel and curcumin prepared in situ through photopolymerization at 532 nm for synergistically suppressing breast tumors. J Mater Chem B 2023; 11:1798-1807. [PMID: 36727624 DOI: 10.1039/d2tb02254k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Combined chemotherapy plays an increasingly important and practical role in the clinical treatment of malignant tumor. In this study, paclitaxel (PTX) and curcumin (Cur) are simultaneously encapsulated into nanogels (termed as NG-PC) in situ by microemulsion photopolymerization at 532 nm for synergistically suppressing breast tumors. NG-PC with a size of 180 nm and a low polydispersity index (PDI < 0.2) presents a controlled and cumulative release of PTX and Cur within 90 h. Moreover, NG-PC displays a remarkable killing effect against 4T1 and MCF-7 cells. In vivo antitumor evaluation on 4T1 tumor-bearing mice demonstrates that NG-PC has significantly higher ability to inhibit tumor growth, inducing necrosis, apoptosis and suppression of proliferation than that of a single drug. Our research provides a facile method to prepare a nano-drug delivery platform with excellent drug co-loading ability and synergistic antitumor effect.
Collapse
Affiliation(s)
- Xiaoyan Song
- Tiangong University, School of Material Science and Engineering, Tianjin 300387, P. R. China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Yuanyuan Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Siyuan Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Xinjing Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
6
|
Inhalable Mannosylated Rifampicin–Curcumin Co-Loaded Nanomicelles with Enhanced In Vitro Antimicrobial Efficacy for an Optimized Pulmonary Tuberculosis Therapy. Pharmaceutics 2022; 14:pharmaceutics14050959. [PMID: 35631546 PMCID: PMC9145552 DOI: 10.3390/pharmaceutics14050959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Among respiratory infections, tuberculosis was the second deadliest infectious disease in 2020 behind COVID-19. Inhalable nanocarriers offer the possibility of actively targeting anti-tuberculosis drugs to the lungs, especially to alveolar macrophages (cellular reservoirs of the Mycobacterium tuberculosis). Our strategy was based on the development of a mannose-decorated micellar nanoformulation based in Soluplus® to co-encapsulate rifampicin and curcumin. The former is one of the most effective anti-tuberculosis first-line drugs, while curcumin has demonstrated potential anti-mycobacterial properties. Mannose-coated rifampicin (10 mg/mL)–curcumin (5 mg/mL)-loaded polymeric micelles (10% w/v) demonstrated excellent colloidal properties with micellar size ~108 ± 1 nm after freeze-drying, and they remain stable under dilution in simulated interstitial lung fluid. Drug-loaded polymeric micelles were suitable for drug delivery to the deep lung with lung accumulation, according to the in vitro nebulization studies and the in vivo biodistribution assays of radiolabeled (99mTc) polymeric micelles, respectively. Hence, the nanoformulation did not exhibit hemolytic potential. Interestingly, the addition of mannose significantly improved (5.2-fold) the microbicidal efficacy against Mycobacterium tuberculosis H37Rv of the drug-co-loaded systems in comparison with their counterpart mannose-free polymeric micelles. Thus, this novel inhaled nanoformulation has demonstrated its potential for active drug delivery in pulmonary tuberculosis therapy.
Collapse
|
7
|
Mohamadian M, Bahrami A, Moradi Binabaj M, Asgharzadeh F, Ferns GA. Molecular Targets of Curcumin and Its Therapeutic Potential for Ovarian Cancer. Nutr Cancer 2022; 74:2713-2730. [PMID: 35266849 DOI: 10.1080/01635581.2022.2049321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ovarian cancer is the fifth most common gynecological cancer in women globally. Conventional chemotherapy is the first therapeutic approach in the treatment of ovarian cancer, but its success is limited by severe side effects, transient response, and the high prevalence of relapse. Curcumin is a natural product found in the rhizome extract of Curcuma longa and has been extensively used over the last decades for its unique biological and medicinal properties, which include: having antioxidant, analgesic, anti-inflammation, and anti-tumor activities. Curcumin exerts its anticancer properties against ovarian cancer via multiple mechanisms: interfering with cellular interactions necessary for metastasis and recurrence of OC cells, increasing pro-apoptotic proteins as well as inducing or suppressing generation of different molecules such as cytokines, transcription factors, enzymes, protein kinases, and growth factors. Moreover, curcumin down-regulates various signaling pathways such as PI3K/Akt, Wnt/β-catenin, JAK/STAT3, and MEK/ERK1/2 axes, which at least in part have a role in inhibiting further tumor proliferation, growth, and angiogenesis. In this review, we overview the potential of incorporating curcumin into the treatment of ovarian cancer. In particular, we summarize the preclinical evidence supporting its use in combination with current chemotherapeutic regimens as well as new analogues and formulations under investigation.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Afsane Bahrami
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Moradi Binabaj
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex, UK
| |
Collapse
|
8
|
Free and nanoencapsulated curcumin prevents scopolamine-induced cognitive impairment in adult zebrafish. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. NANO CONVERGENCE 2021; 8:34. [PMID: 34727233 PMCID: PMC8560887 DOI: 10.1186/s40580-021-00282-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 05/09/2023]
Abstract
Modern medicine has been waging a war on cancer for nearly a century with no tangible end in sight. Cancer treatments have significantly progressed, but the need to increase specificity and decrease systemic toxicities remains. Early diagnosis holds a key to improving prognostic outlook and patient quality of life, and diagnostic tools are on the cusp of a technological revolution. Nanotechnology has steadily expanded into the reaches of cancer chemotherapy, radiotherapy, diagnostics, and imaging, demonstrating the capacity to augment each and advance patient care. Nanomaterials provide an abundance of versatility, functionality, and applications to engineer specifically targeted cancer medicine, accurate early-detection devices, robust imaging modalities, and enhanced radiotherapy adjuvants. This review provides insights into the current clinical and pre-clinical nanotechnological applications for cancer drug therapy, diagnostics, imaging, and radiation therapy.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
10
|
Comini LR, Alasino RV, Leonhard V, Bierbrauer KL, Beltramo DM. Self-assembled micelles of the (lipo) glycopeptides, teicoplanin, as taxane nanocarriers. NANOTECHNOLOGY 2021; 32:465102. [PMID: 34330111 DOI: 10.1088/1361-6528/ac1979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The use of nanoparticles is one of the strategies currently studied to minimize the toxicity and lack of tissue specificity of many cancer drugs used in chemotherapy. In this research the physicochemical and biological behavior of a novel self-assembled nanostructure of the antibiotic Teicoplanin (Teico) was characterized as a nanocarrier system for solubilizing highly hydrophobic drugs like Paclitaxel (Ptx) in aqueous media. The Teico micelles were loaded with Ptx in DMSO or PEG-400. The interaction between the loaded micelles and Albumin human serum albumin (HSA) was then studied by size exclusion chromatography. Transmission electron microscopy, dynamic light scattering and high-resolution liquid chromatography were also used to characterize the physicochemical and structural properties of the micelles to form the Teico/Ptx and Teico/Ptx/HSA micelles. Cellular uptake of Ptx was evaluated by fluorescent microscopy. Thein vitrocytotoxicity of the complexes was studied on Hep-2 tumor cells, by a Crystal Violet assay. Teico cosolvent-free micelles can solubilize up to 20 mg.ml-1of Ptx dissolved in PEG, increasing four times the solubility of Ptx in water compared to Abraxane, and 20 000 times the intrinsic solubility of Ptx in water. In addition, Teico/Ptx micelles binds spontaneously HSA through hydrophobic interaction. Teico and Teico/HSA micelles as a Ptx transporter does not affect its release or biological activity. Therefore, Teico/Ptx or Teico/Ptx/HSA complexes appear as new alternatives for transporting larger amounts of hydrophobic drugs that offer advantages, turning it an interesting option for further study.
Collapse
Affiliation(s)
- Laura Raquel Comini
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Roxana Valeria Alasino
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Victoria Leonhard
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Karina Lilian Bierbrauer
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Dante Miguel Beltramo
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Cátedra de Biotecnología, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| |
Collapse
|
11
|
Calienni MN, Maza Vega D, Temprana CF, Izquierdo MC, Ybarra DE, Bernabeu E, Moretton M, Alvira FC, Chiappetta D, Alonso SDV, Prieto MJ, Montanari J. The Topical Nanodelivery of Vismodegib Enhances Its Skin Penetration and Performance In Vitro While Reducing Its Toxicity In Vivo. Pharmaceutics 2021; 13:pharmaceutics13020186. [PMID: 33535434 PMCID: PMC7912039 DOI: 10.3390/pharmaceutics13020186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
Vismodegib is a first-in-class inhibitor for advanced basal cell carcinoma treatment. Its daily oral doses present a high distribution volume and several side effects. We evaluated its skin penetration loaded in diverse nanosystems as potential strategies to reduce side effects and drug quantities. Ultradeformable liposomes, ethosomes, colloidal liquid crystals, and dendrimers were able to transport Vismodegib to deep skin layers, while polymeric micelles failed at this. As lipidic systems were the most effective, we assessed the in vitro and in vivo toxicity of Vismodegib-loaded ultradeformable liposomes, apoptosis, and cellular uptake. Vismodegib emerges as a versatile drug that can be loaded in several delivery systems for topical application. These findings may be also useful for the consideration of topical delivery of other drugs with a low water solubility.
Collapse
Affiliation(s)
- Maria Natalia Calienni
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires 1876, Argentina; (M.N.C.); (D.M.V.); (M.C.I.); (D.E.Y.); (F.C.A.); (S.d.V.A.); (M.J.P.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires 1906, Argentina
- Universidad Nacional de Hurlingham (UNAHUR), Hurlingham, Buenos Aires 1688, Argentina
| | - Daniela Maza Vega
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires 1876, Argentina; (M.N.C.); (D.M.V.); (M.C.I.); (D.E.Y.); (F.C.A.); (S.d.V.A.); (M.J.P.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires 1906, Argentina
| | - C. Facundo Temprana
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Inmunología y Virología (LIV), Bernal, Buenos Aires 1876, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina; (E.B.); (M.M.); (D.C.)
| | - María Cecilia Izquierdo
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires 1876, Argentina; (M.N.C.); (D.M.V.); (M.C.I.); (D.E.Y.); (F.C.A.); (S.d.V.A.); (M.J.P.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires 1906, Argentina
| | - David E. Ybarra
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires 1876, Argentina; (M.N.C.); (D.M.V.); (M.C.I.); (D.E.Y.); (F.C.A.); (S.d.V.A.); (M.J.P.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires 1906, Argentina
| | - Ezequiel Bernabeu
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina; (E.B.); (M.M.); (D.C.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires 1113, Argentina
| | - Marcela Moretton
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina; (E.B.); (M.M.); (D.C.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires 1113, Argentina
| | - Fernando C. Alvira
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires 1876, Argentina; (M.N.C.); (D.M.V.); (M.C.I.); (D.E.Y.); (F.C.A.); (S.d.V.A.); (M.J.P.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires 1906, Argentina
| | - Diego Chiappetta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina; (E.B.); (M.M.); (D.C.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires 1113, Argentina
| | - Silvia del Valle Alonso
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires 1876, Argentina; (M.N.C.); (D.M.V.); (M.C.I.); (D.E.Y.); (F.C.A.); (S.d.V.A.); (M.J.P.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires 1906, Argentina
| | - María Jimena Prieto
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires 1876, Argentina; (M.N.C.); (D.M.V.); (M.C.I.); (D.E.Y.); (F.C.A.); (S.d.V.A.); (M.J.P.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires 1906, Argentina
| | - Jorge Montanari
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires 1876, Argentina; (M.N.C.); (D.M.V.); (M.C.I.); (D.E.Y.); (F.C.A.); (S.d.V.A.); (M.J.P.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires 1906, Argentina
- Universidad Nacional de Hurlingham (UNAHUR), Hurlingham, Buenos Aires 1688, Argentina
- Correspondence:
| |
Collapse
|