1
|
Abu Elella MH, Kolawole OM. Recent advances in modified chitosan-based drug delivery systems for transmucosal applications: A comprehensive review. Int J Biol Macromol 2024; 277:134531. [PMID: 39116977 DOI: 10.1016/j.ijbiomac.2024.134531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Recently, transmucosal drug delivery systems (TDDSs) have been extensively studied because they protect therapeutic agents from degradation; improve drug residence time at the mucosal membranes; and facilitate sustained drug release for a prolonged period. Chitosan is a well-researched polymeric excipient due to its biocompatibility, non-toxicity, biodegradability, mucoadhesive, antimicrobial, and low immunogenicity. Its limited mucoadhesiveness in the physiological environment necessitated its chemical modification. This review highlights the recent advances in the chemical modification of chitosan with various chemical groups to generate various functionalized chitosan derivatives, such as thiolated, acrylated, methacrylated, boronated, catechol, and maleimide-functionalized chitosans with superior mucoadhesive capabilities compared to the parent chitosan. Moreover, it presents the different prepared dosage forms, such as tablets, hydrogels, films, micro/nanoparticles, and liposomes/niosomes for drug administration within various mucosal routes including oral, buccal, nasal, ocular, colonic, intravesical, and vaginal routes. The reported data from preclinical studies of these pharmaceutical formulations have revealed the controlled and target-specific delivery of therapeutics because of their formation of covalent bonds with thiol groups on the mucosal surface. All functionalized chitosan derivatives exhibited long drug residence time on mucosal surfaces and sustainable drug release with excellent cellular permeability, drug efficacy, and biocompatibility. These promising data could be translated from the research laboratories to the clinics with consistent and intensive research effort.
Collapse
Affiliation(s)
- Mahmoud H Abu Elella
- School of Pharmacy, University of Reading, Reading RG6 6AD, United Kingdom; Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | | |
Collapse
|
2
|
Kolawole OM, Khutoryanskiy VV. Potential bladder cancer therapeutic delivery systems: a recent update. Expert Opin Drug Deliv 2024; 21:1311-1329. [PMID: 39178039 DOI: 10.1080/17425247.2024.2396958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 08/25/2024]
Abstract
INTRODUCTION Bladder Cancer is one of the most expensive cancers to treat due to its high cost of therapy as well as the surveillance expenses incurred to prevent disease recurrence and progression. Thus, there is a strong need to develop safe, efficacious drug formulations with controlled drug release profiles and tumor-targeting potential, for improved therapeutic outcomes of bladder cancer patients. AREAS COVERED This review aims to provide an overview of drug formulations that have been studied for potential bladder cancer treatment in the last decade; highlight recent trends in bladder cancer treatment; mention ongoing clinical trials on bladder cancer chemotherapy; detail recently FDA-approved drug products for bladder cancer treatment and identify constraints that have prevented the translation of promising drug formulations from the research laboratory to the clinics. EXPERT OPINION This work revealed that surface functionalization of particulate drug delivery systems and incorporating the nanoparticles into in situ gelling systems could facilitate controlled drug release for extended periods, and improve the prognosis of bladder cancer treatment. Future research directions could incorporate multiple drugs into the drug delivery systems to treat advanced stages of the disease. In addition, smart nanomaterials, including photothermal therapies, could be exploited to improve the therapeutic outcomes of bladder cancer patients.
Collapse
|
3
|
Putro JN, Soetaredjo FE, Lunardi VB, Irawaty W, Yuliana M, Santoso SP, Puspitasari N, Wenten IG, Ismadji S. Polysaccharides gums in drug delivery systems: A review. Int J Biol Macromol 2023; 253:127020. [PMID: 37741484 DOI: 10.1016/j.ijbiomac.2023.127020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
For the drug delivery system, drug carriers' selection is critical to the drug's success in reaching the desired target. Drug carriers from natural biopolymers are preferred over synthetic materials due to their biocompatibility. The use of polysaccharide gums in the drug delivery system has received considerable attention in recent years. Polysaccharide gums are renewable resources and abundantly found in nature. They could be isolated from marine algae, microorganisms, and higher plants. In terms of carbohydrates, the gums are water-soluble, non-starch polysaccharides with high commercial value. Polysaccharide gums are widely used for controlled-release products, capsules, medicinal binders, wound healing agents, capsules, and tablet excipients. One of the essential applications of polysaccharide gum is drug delivery systems. The various kinds of polysaccharide gums obtained from different plants, marine algae, and microorganisms for the drug delivery system application are discussed comprehensively in this review paper.
Collapse
Affiliation(s)
- Jindrayani Nyoo Putro
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Valentino Bervia Lunardi
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
| | - Wenny Irawaty
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Maria Yuliana
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Natania Puspitasari
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - I Gede Wenten
- Department of Chemical Engineering, Institute of Technology Bandung (ITB), Jl. Ganesha 10, Bandung 40132, Indonesia
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia.
| |
Collapse
|
4
|
Oluwadamilola Miriam K, Rosemary IA, Adebimpe IW, Olusola AM, Prasopchai P, Olanrewaju SB, Adediran OA. Formulation and evaluation of paclitaxel-loaded boronated chitosan/alginate nanoparticles as a mucoadhesive system for localized cervical cancer drug delivery. J Drug Deliv Sci Technol 2023; 87:104810. [PMID: 37601485 PMCID: PMC10434836 DOI: 10.1016/j.jddst.2023.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Cervical cancer remains a significant global health challenge, and there is a need for innovative drug delivery systems to improve the efficacy of anticancer drugs. In this study, we developed and evaluated boronated chitosan/alginate nanoparticles (BCHIALG NPs) as a localized mucoadhesive drug delivery system for cervical cancer. Boronated chitosan (BCHI) was synthesized by incorporating 4-carboxyphenylboronic acid onto chitosan (CHI), and boronated chitosan/alginate nanoparticles (BCHIALG NPs) with varying polymer ratios were prepared using an ionic gelation method. The physical properties, drug loading capacity/encapsulation efficiency, mucoadhesive properties, and in vitro drug release profile of the nanoparticles were evaluated. The BCHIALG NPs exhibited a size of less than 390 nm and demonstrated high drug encapsulation efficiency (98.1 - 99.8%) and loading capacity (326.9 - 332.7 μg/mg). Remarkably, the BCHIALG NPs containing 0.03% boronated chitosan and 0.07% alginate showed superior mucoadhesive capability compared to CHIALG NPs, providing sustained drug release and they showed the most promising results as a transmucosal drug delivery system for hydrophobic drugs like paclitaxel (PTX). To the best of our knowledge, this is the first report investigating BCHIALG NPs for cervical drug delivery. The new mucoadhesive paclitaxel formulation could offer an innovative strategy for improving cervical cancer treatment.
Collapse
Affiliation(s)
| | - Ifeanafor Adaora Rosemary
- Department of Pharmaceutics and Pharmaceutical Technology, University of Lagos, Lagos State, Nigeria
| | - Ifade Wuraola Adebimpe
- Department of Pharmaceutics and Pharmaceutical Technology, University of Lagos, Lagos State, Nigeria
| | | | | | - Silva Boladale Olanrewaju
- Department of Pharmaceutics and Pharmaceutical Technology, University of Lagos, Lagos State, Nigeria
| | | |
Collapse
|
5
|
Veloso SRS, Marta ES, Rodrigues PV, Moura C, Amorim CO, Amaral VS, Correa-Duarte MA, Castanheira EMS. Chitosan/Alginate Nanogels Containing Multicore Magnetic Nanoparticles for Delivery of Doxorubicin. Pharmaceutics 2023; 15:2194. [PMID: 37765164 PMCID: PMC10538132 DOI: 10.3390/pharmaceutics15092194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, multicore-like iron oxide (Fe3O4) and manganese ferrite (MnFe2O4) nanoparticles were synthesized and combined with nanogels based on chitosan and alginate to obtain a multimodal drug delivery system. The nanoparticles exhibited crystalline structures and displayed sizes of 20 ± 3 nm (Fe3O4) and 11 ± 2 nm (MnFe2O4). The Fe3O4 nanoparticles showed a higher saturation magnetization and heating efficiency compared with the MnFe2O4 nanoparticles. Functionalization with citrate and bovine serum albumin was found to improve the stability and modified surface properties. The nanoparticles were encapsulated in nanogels, and provided high drug encapsulation efficiencies (~70%) using doxorubicin as a model drug. The nanogels exhibited sustained drug release, with enhanced release under near-infrared (NIR) laser irradiation and acidic pH. The nanogels containing BSA-functionalized nanoparticles displayed improved sustained drug release at physiological pH, and the release kinetics followed a diffusion-controlled mechanism. These results demonstrate the potential of synthesized nanoparticles and nanogels for controlled drug delivery, offering opportunities for targeted and on-demand release in biomedical applications.
Collapse
Affiliation(s)
- Sérgio R. S. Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Eva S. Marta
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Pedro V. Rodrigues
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), University of Minho, 4804-533 Guimarães, Portugal
| | - Cacilda Moura
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Carlos O. Amorim
- Physics Department and CICECO, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (C.O.A.); (V.S.A.)
| | - Vítor S. Amaral
- Physics Department and CICECO, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (C.O.A.); (V.S.A.)
| | - Miguel A. Correa-Duarte
- Centro de Investigación en Nanomateriais e Biomedicina (CINBIO), Universidad de Vigo, 36310 Vigo, Spain
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
Wang X, Zhang Y, Li T, Liu Y. Bioorthogonal Glycoengineering-Mediated Multifunctional Liquid Metal Nanoprobes for Highly Efficient Photoacoustic Imaging-Guided Photothermal/Chemotherapy of Tumor. ACS APPLIED BIO MATERIALS 2023; 6:3232-3240. [PMID: 37432729 DOI: 10.1021/acsabm.3c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The development of a multifunctional cancer diagnosis and treatment platform offers excellent prospects for the effective eradication of malignant solid tumors. Herein, a doxorubicin hydrochloride (DOX)-loaded tannic acid (TA)-coated liquid metal (LM) multifunctional nanoprobe was synthesized and applied as a highly efficient platform for the photoacoustic (PA) imaging-guided photothermal/chemotherapy of tumor. The multifunctional nanoprobes exhibited strong near-infrared absorption, a remarkable photothermal conversion efficiency (PCE) of 55%, and high DOX loading capacity. Combined with the large intrinsic thermal expansion coefficient of LM, highly efficient PA imaging and effective drug release were realized. The LM-based multifunctional nanoprobes were specifically adsorbed into the cancer cells and tumor tissues via glycoengineering biorthogonal chemistry. The in vitro and in vivo photothermal/chemo-anticancer activity confirmed their promising potential in cancer treatment. The subcutaneous breast tumor-bearing mice completely recovered in 5 days under light illumination with clear PA imaging presentation, which showed better antitumor outcomes than single-mode chemotherapy or photothermal therapy (PTT), while keeping side effects at a minimum. Such an LM-based PA imaging-guided photothermal/chemotherapy strategy provided a valuable platform for resistant cancer precise treatment and intelligent biomedicine.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yimeng Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Ting Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Ribeiro L, Sala RL, Robeldo TA, Borra RC, Camargo ER. Injectable Thermosensitive Nanocomposites Based on Poly( N-vinylcaprolactam) and Silica Particles for Localized Release of Hydrophilic and Hydrophobic Drugs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2380-2388. [PMID: 36744422 PMCID: PMC9933531 DOI: 10.1021/acs.langmuir.2c03160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The systemic delivery of drugs employed by conventional methods has shown to be less effective than a localized delivery system. Many drugs have the effectiveness reduced by fast clearance, increasing the amount required for an efficient treatment. One way to overcome this drawback is through the use of thermoresponsive polymers that undergo a sol-gel transition at physiological temperature, allowing their injection directly in the desired site. In this work, thermosensitive nanocomposites based on poly(N-vinylcaprolactam) and silica particles with 80 and 330 nm were synthesized to be employed as delivery systems for hydrophobic (naringin) and hydrophilic (doxorubicin hydrochloride) drugs. The insertion of SiO2 increased the rheological properties of the nanocomposite at 37 °C, which helps to prevent its diffusion away from the site of injection. The synthesized materials were also able to control the drug release for a period of 7 days under physiological conditions. Due to its higher hydrophobicity and better interaction with the PNVCL matrix, naringin presented a more controlled release. The Korsmeyer-Peppas model indicated different release mechanisms for each drug. At last, a preliminary in vitro study of DOX-loaded nanocomposites cultured with L929 and MB49 cells showed negligible toxic effects on healthy cells and better efficient inhibition of carcinoma cells.
Collapse
Affiliation(s)
- Lucas
S. Ribeiro
- Interdisciplinary
Laboratory of Electrochemistry and Ceramics (LIEC), Departament of
Chemistry, Federal University of São
Carlos (UFSCar), Rod.
Washington Luis km 235, CP 676 São Carlos, São Paulo 13565-905, Brazil
| | - Renata L. Sala
- Interdisciplinary
Laboratory of Electrochemistry and Ceramics (LIEC), Departament of
Chemistry, Federal University of São
Carlos (UFSCar), Rod.
Washington Luis km 235, CP 676 São Carlos, São Paulo 13565-905, Brazil
| | - Thaiane A. Robeldo
- Laboratory
of Applied Immunology, Federal University
of São Carlos (UFSCar), São Carlos, Rod. Washington Luis km 235, CP 676 São Carlos, São Paulo 13565-905, Brazil
| | - Ricardo C. Borra
- Laboratory
of Applied Immunology, Federal University
of São Carlos (UFSCar), São Carlos, Rod. Washington Luis km 235, CP 676 São Carlos, São Paulo 13565-905, Brazil
| | - Emerson R. Camargo
- Interdisciplinary
Laboratory of Electrochemistry and Ceramics (LIEC), Departament of
Chemistry, Federal University of São
Carlos (UFSCar), Rod.
Washington Luis km 235, CP 676 São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
8
|
Kotoulas KT, Campbell J, Skirtach AG, Volodkin D, Vikulina A. Surface Modification with Particles Coated or Made of Polymer Multilayers. Pharmaceutics 2022; 14:2483. [PMID: 36432674 PMCID: PMC9697854 DOI: 10.3390/pharmaceutics14112483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The coating of particles or decomposable cores with polyelectrolytes via Layer-by-Layer (LbL) assembly creates free-standing LbL-coated functional particles. Due to the numerous functions that their polymers can bestow, the particles are preferentially selected for a plethora of applications, including, but not limited to coatings, cargo-carriers, drug delivery vehicles and fabric enhancements. The number of publications discussing the fabrication and usage of LbL-assembled particles has consistently increased over the last vicennial. However, past literature fails to either mention or expand upon how these LbL-assembled particles immobilize on to a solid surface. This review evaluates examples of LbL-assembled particles that have been immobilized on to solid surfaces. To aid in the formulation of a mechanism for immobilization, this review examines which forces and factors influence immobilization, and how the latter can be confirmed. The predominant forces in the immobilization of the particles studied here are the Coulombic, capillary, and adhesive forces; hydrogen bonding as well as van der Waal's and hydrophobic interactions are also considered. These are heavily dependent on the factors that influenced immobilization, such as the particle morphology and surface charge. The shape of the LbL particle is related to the particle core, whereas the charge was dependant on the outermost polyelectrolyte in the multilayer coating. The polyelectrolytes also determine the type of bonding that a particle can form with a solid surface. These can be via either physical (non-covalent) or chemical (covalent) bonds; the latter enforcing a stronger immobilization. This review proposes a fundamental theory for immobilization pathways and can be used to support future research in the field of surface patterning and for the general modification of solid surfaces with polymer-based nano- and micro-sized polymer structures.
Collapse
Affiliation(s)
- Konstantinos T. Kotoulas
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| | - Andre G. Skirtach
- Bio-Nanotechnology Laboratory, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Dmitry Volodkin
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Anna Vikulina
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| |
Collapse
|
9
|
Sarfraz M, Qamar S, Rehman MU, Tahir MA, Ijaz M, Ahsan A, Asim MH, Nazir I. Nano-Formulation Based Intravesical Drug Delivery Systems: An Overview of Versatile Approaches to Improve Urinary Bladder Diseases. Pharmaceutics 2022; 14:pharmaceutics14091909. [PMID: 36145657 PMCID: PMC9501312 DOI: 10.3390/pharmaceutics14091909] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Intravesical drug delivery is a direct drug delivery approach for the treatment of various bladder diseases. The human urinary bladder has distinctive anatomy, making it an effective barrier against any toxic agent seeking entry into the bloodstream. This screening function of the bladder derives from the structure of the urothelium, which acts as a semi-permeable barrier. However, various diseases related to the urinary bladder, such as hyperactive bladder syndrome, interstitial cystitis, cancer, urinary obstructions, or urinary tract infections, can alter the bladder’s natural function. Consequently, the intravesical route of drug delivery can effectively treat such diseases as it offers site-specific drug action with minimum side effects. Intravesical drug delivery is the direct instillation of medicinal drugs into the urinary bladder via a urethral catheter. However, there are some limitations to this method of drug delivery, including the risk of washout of the therapeutic agents with frequent urination. Moreover, due to the limited permeability of the urinary bladder walls, the therapeutic agents are diluted before the process of permeation, and consequently, their efficiency is compromised. Therefore, various types of nanomaterial-based delivery systems are being employed in intravesical drug delivery to enhance the drug penetration and retention at the targeted site. This review article covers the various nanomaterials used for intravesical drug delivery and future aspects of these nanomaterials for intravesical drug delivery.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al-Ain University, Al-Ain 64141, United Arab Emirates
| | - Shaista Qamar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 45320, Pakistan
| | - Muhammad Azam Tahir
- Department of Pharmacy, Khalid Mahmood Institute of Medical Sciences, Sialkot 51310, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Correspondence: (M.I.); or (I.N.); Tel.: +92-306-3700456 (M.I.); +92-0992-383591 (I.N.)
| | - Anam Ahsan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | | | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Correspondence: (M.I.); or (I.N.); Tel.: +92-306-3700456 (M.I.); +92-0992-383591 (I.N.)
| |
Collapse
|
10
|
Jin Z, Hu G, Zhao K. Mannose-anchored quaternized chitosan/thiolated carboxymethyl chitosan composite NPs as mucoadhesive carrier for drug delivery. Carbohydr Polym 2022; 283:119174. [DOI: 10.1016/j.carbpol.2022.119174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
|
11
|
Sahatsapan N, Pamornpathomkul B, Rojanarata T, Ngawhirunpat T, Poonkhum R, Opanasopit P, Patrojanasophon P. Feasibility of mucoadhesive chitosan maleimide-coated liposomes for improved buccal delivery of a protein drug. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Niculescu AG, Grumezescu AM. Applications of Chitosan-Alginate-Based Nanoparticles-An Up-to-Date Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:186. [PMID: 35055206 PMCID: PMC8778629 DOI: 10.3390/nano12020186] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Chitosan and alginate are two of the most studied natural polymers that have attracted interest for multiple uses in their nano form. The biomedical field is one of the domains benefiting the most from the development of nanotechnology, as increasing research interest has been oriented to developing chitosan-alginate biocompatible delivery vehicles, antimicrobial agents, and vaccine adjuvants. Moreover, these nanomaterials of natural origin have also become appealing for environmental protection (e.g., water treatment, environmental-friendly fertilizers, herbicides, and pesticides) and the food industry. In this respect, the present paper aims to discuss some of the newest applications of chitosan-alginate-based nanomaterials and serve as an inception point for further research in the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
13
|
Gülsu A, Yüksektepe E. Preparation of Spherical Cellulose Nanoparticles from Recycled Waste Cotton for Anticancer Drug Delivery. ChemistrySelect 2021. [DOI: 10.1002/slct.202101683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aydan Gülsu
- Molecular Biology and Genetics Department Mugla Sitki Kocman University Muğla 48000 Turkey
| | - Ecem Yüksektepe
- Molecular Biology and Genetics Department Mugla Sitki Kocman University Muğla 48000 Turkey
| |
Collapse
|