1
|
Aziz M, Bashir S, Sarfraz RM, Ijaz H, Mahmood A, Zulcaif, Haroon B, Mezher MA, Salem MM, Al Zahrani S, Bekhit MM. Development and In-Vitro Tuning of Piperine Containing Solid Lipid Microparticles for the Treatment of Rheumatoid Arthritis. AAPS PharmSciTech 2025; 26:44. [PMID: 39843808 DOI: 10.1208/s12249-024-03034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
The current project was designed to develop piperine-loaded solid lipid microparticles (SLMs) to assess the anti-arthritic potential of piperine (PIP). Variable proportions of carnauba wax, beeswax, and tween 80 were employed for preparing SLMs by using the solvent evaporation technique. The developed formulations were subjected to particle size measurements, entrapment efficiency (EE), and zeta potential (ZP) determination. Microparticles were also investigated for piperine-lipid compatibility, thermal analysis, surface morphology, piperine (PIP) release trend, and anti-rheumatic activity in rats. The network's grafting was confirmed by FTIR and XRD results. The thermal stability of the constructed network was confirmed by the DSC and TGA results. SEM findings confirm porous surface morphology. The dissolution experiments on SLMs confirmed the sustained release profile, delivering 87.82% to 94.92% of piperine at 7.4 pH for 24 h. All developed formulations followed a zero-order kinetic model and the Korsmeyer-Peppas model. Furthermore, the anti-rheumatic potentials of piperine from SLMs were also investigated and compared with diclofenac sodium (the standard treatment) in a rat model. The analysis revealed that PIP significantly reduced the severity of arthritis, as confirmed by the findings of multiple arthritic assessment parameters.
Collapse
Affiliation(s)
- Muneeba Aziz
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Sajid Bashir
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | | | - Hira Ijaz
- Department of Pharmaceutical Sciences, Pak-Austria Fachhochschule, Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy, University of Chakwal, Chakwal, Pakistan
| | - Zulcaif
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Punjab, Pakistan
| | - Bilal Haroon
- Department of Pharmacy, The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Milad A Mezher
- Biology Department, College of Education for Pure Sciences, Tikrit University, Tikrit, Iraq
| | - Mohamed M Salem
- College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Sami Al Zahrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, 11451, Riyadh, Saudi Arabia
| | - Mounir M Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Gomes FL, Conceição F, Teixeira LM, Leijten J, Jonkheijm P. Production of Hydrophobic Microparticles at Safe-To-Inject Sizes for Intravascular Administration. Pharmaceutics 2025; 17:64. [PMID: 39861712 PMCID: PMC11768317 DOI: 10.3390/pharmaceutics17010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Hydrophobic microparticles are one of the most versatile structures in drug delivery and tissue engineering. These constructs offer a protective environment for hydrophobic or water-sensitive compounds (e.g., drugs, peroxides), providing an optimal solution for numerous biomedical purposes, such as drug delivery or oxygen therapeutics. The intravascular administration of hydrophobic microparticles requires a safe-to-flow particle profile, which typically corresponds to a maximum size of 5 µm-the generally accepted diameter for the thinnest blood vessels in humans. However, the production of hydrophobic microparticles below this size range remains largely unexplored. In this work, we investigate the fabrication of hydrophobic microparticles at safe-to-inject and safe-to-flow sizes (<5 µm) for intravascular administration. Methods: Polycaprolactone microparticles (PCL MPs) are produced using a double-emulsification method with tip ultrasonication, for which various production parameters (PCL molecular weight, PCL concentration, type of stabilizer, and filtration) are optimized to obtain particles at sizes below 5 µm. Results: We achieve a PCL MP size distribution of 99.8% below this size limit, and prove that these particles can flow without obstruction through a microfluidic model emulating a thin human blood capillary (4.1 µm × 3.0 µm width × heigh). Conclusions: Overall, we demonstrate that hydrophobic microparticles can be fabricated at safe-to-flow sizes using a simple and scalable setup, paving the way towards their applicability as new intravascular injectables.
Collapse
Affiliation(s)
- Francisca L. Gomes
- Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands;
- Leijten Laboratory, Department of BioEngineering Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands
| | - Francisco Conceição
- Department of BioEngineering Technologies, Advanced Organ Bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands; (F.C.); (L.M.T.)
| | - Liliana Moreira Teixeira
- Department of BioEngineering Technologies, Advanced Organ Bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands; (F.C.); (L.M.T.)
- Organ-on-Chip Centre Twente, MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands
| | - Jeroen Leijten
- Leijten Laboratory, Department of BioEngineering Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands
| | - Pascal Jonkheijm
- Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands;
- Organ-on-Chip Centre Twente, MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands
| |
Collapse
|
3
|
Kunkel AA, McHugh KJ. Injectable controlled-release systems for the prevention and treatment of infectious diseases. J Biomed Mater Res A 2024; 112:1224-1240. [PMID: 37740704 DOI: 10.1002/jbm.a.37615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
Pharmaceutical drugs, including vaccines, pre- and post-exposure prophylactics, and chronic drug therapies, are crucial tools in the prevention and treatment of infectious diseases. These drugs have the ability to increase survival and improve patient quality of life; however, infectious diseases still accounted for more than 10.2 million deaths in 2019 before the COVID-19 pandemic. High mortality can be, in part, attributed to challenges in the availability of adequate drugs and vaccines, limited accessibility, poor drug bioavailability, the high cost of some treatments, and low patient adherence. A majority of these factors are logistical rather than technical challenges, providing an opportunity for existing drugs and vaccines to be improved through formulation. Injectable controlled-release drug delivery systems are one class of formulations that have the potential to overcome many of these limitations by releasing their contents in a sustained manner to reduce the need for frequent re-administration and improve clinical outcomes. This review provides an overview of injectable controlled drug delivery platforms, including microparticles, nanoparticles, and injectable gels, detailing recent developments using these systems for single-injection vaccination, long-acting prophylaxis, and sustained-release treatments for infectious disease.
Collapse
Affiliation(s)
- Alyssa A Kunkel
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
| |
Collapse
|
4
|
Zhao J, Tian H, Shang F, Lv T, Chen D, Feng J. Injectable, Anti-Cancer Drug-Eluted Chitosan Microspheres against Osteosarcoma. J Funct Biomater 2022; 13:jfb13030091. [PMID: 35893459 PMCID: PMC9326769 DOI: 10.3390/jfb13030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 12/07/2022] Open
Abstract
The purpose of this study is to fabricate different anti-cancer drug-eluted chitosan microspheres for combination therapy of osteosarcoma. In this study, electrospray in combination with ground liquid nitrogen was utilized to manufacture the microspheres. The size of obtained chitosan microspheres was uniform, and the average diameter was 532 μm. The model drug release rate and biodegradation rate of chitosan microspheres could be controlled by the glutaraldehyde vapor crosslinking time. Then the 5-fluorouracil (5-FU), paclitaxel (PTX), and Cis-dichlorodiammine-platinum (CDDP) eluted chitosan microspheres were prepared, and two osteosarcoma cell lines, namely, HOS and MG-63, were selected as cell models for in vitro demonstration. We found the 5-FU microspheres, PTX microspheres, and CDDP microspheres could significantly inhibit the growth and migration of both HOS and MG-63 cells. The apoptosis of both cells treated with 5-FU microspheres, PTX microspheres, and CDDP microspheres was significantly increased compared to the counterparts of control and blank groups. The anti-cancer drug-eluted chitosan microspheres show great potential for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jiebing Zhao
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (J.Z.); (H.T.); (T.L.)
| | - Hao Tian
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (J.Z.); (H.T.); (T.L.)
| | - Fusheng Shang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; (F.S.); (D.C.)
| | - Tao Lv
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (J.Z.); (H.T.); (T.L.)
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; (F.S.); (D.C.)
| | - Jianjun Feng
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (J.Z.); (H.T.); (T.L.)
- Fudan Zhangjiang Institute, Fudan University, Shanghai 201203, China
- Correspondence: ; Tel.: +86-18918366263
| |
Collapse
|
5
|
Khan MI, Zahra QUA, Batool F, Kalsoom F, Gao S, Ali R, Wang W, Kazmi A, Lianliang L, Wang G, Bilal M. Current Nano-Strategies to Improve Therapeutic Efficacy Across Special Structures. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Vlachopoulos A, Karlioti G, Balla E, Daniilidis V, Kalamas T, Stefanidou M, Bikiaris ND, Christodoulou E, Koumentakou I, Karavas E, Bikiaris DN. Poly(Lactic Acid)-Based Microparticles for Drug Delivery Applications: An Overview of Recent Advances. Pharmaceutics 2022; 14:359. [PMID: 35214091 PMCID: PMC8877458 DOI: 10.3390/pharmaceutics14020359] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
The sustained release of pharmaceutical substances remains the most convenient way of drug delivery. Hence, a great variety of reports can be traced in the open literature associated with drug delivery systems (DDS). Specifically, the use of microparticle systems has received special attention during the past two decades. Polymeric microparticles (MPs) are acknowledged as very prevalent carriers toward an enhanced bio-distribution and bioavailability of both hydrophilic and lipophilic drug substances. Poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA), and their copolymers are among the most frequently used biodegradable polymers for encapsulated drugs. This review describes the current state-of-the-art research in the study of poly(lactic acid)/poly(lactic-co-glycolic acid) microparticles and PLA-copolymers with other aliphatic acids as drug delivery devices for increasing the efficiency of drug delivery, enhancing the release profile, and drug targeting of active pharmaceutical ingredients (API). Potential advances in generics and the constant discovery of therapeutic peptides will hopefully promote the success of microsphere technology.
Collapse
Affiliation(s)
- Antonios Vlachopoulos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Georgia Karlioti
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evangelia Balla
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Vasileios Daniilidis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Theocharis Kalamas
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Myrika Stefanidou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Nikolaos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evangelos Karavas
- Pharmathen S.A., Pharmaceutical Industry, Dervenakion Str. 6, Pallini Attikis, GR-153 51 Attiki, Greece
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| |
Collapse
|