1
|
Unnikrishnan G, Joy A, Megha M, Kolanthai E, Senthilkumar M. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: a critical review. DISCOVER NANO 2023; 18:157. [PMID: 38112849 PMCID: PMC10730791 DOI: 10.1186/s11671-023-03943-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The nanosystems for delivering drugs which have evolved with time, are being designed for greater drug efficiency and lesser side-effects, and are also complemented by the advancement of numerous innovative materials. In comparison to the organic nanoparticles, the inorganic nanoparticles are stable, have a wide range of physicochemical, mechanical, magnetic, and optical characteristics, and also have the capability to get modified using some ligands to enrich their attraction towards the molecules at the target site, which makes them appealing for bio-imaging and drug delivery applications. One of the strong benefits of using the inorganic nanoparticles-drug conjugate is the possibility of delivering the drugs to the affected cells locally, thus reducing the side-effects like cytotoxicity, and facilitating a higher efficacy of the therapeutic drug. This review features the direct and indirect effects of such inorganic nanoparticles like gold, silver, graphene-based, hydroxyapatite, iron oxide, ZnO, and CeO2 nanoparticles in developing effective drug carrier systems. This article has remarked the peculiarities of these nanoparticle-based systems in pulmonary, ocular, wound healing, and antibacterial drug deliveries as well as in delivering drugs across Blood-Brain-Barrier (BBB) and acting as agents for cancer theranostics. Additionally, the article sheds light on the plausible modifications that can be carried out on the inorganic nanoparticles, from a researcher's perspective, which could open a new pathway.
Collapse
Affiliation(s)
- Gayathri Unnikrishnan
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Anjumol Joy
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - M Megha
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Elayaraja Kolanthai
- Department of Materials Sciences and Engineering, Advanced Materials Processing and Analysis Centre, University of Central Florida, Orlando, FL, USA.
| | - M Senthilkumar
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India.
| |
Collapse
|
2
|
Shin SM, Park HI, Sung AY. Correlation Analysis of Surface and Physical Properties of Ophthalmic Lenses Containing Nanoparticles. MICROMACHINES 2023; 14:1883. [PMID: 37893320 PMCID: PMC10609528 DOI: 10.3390/mi14101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Since contact lenses directly contact the cornea, the surface roughness of the lens may cause various side effects. In addition, gold nanoparticles can realize a variety of colors and characteristics depending on their shape and size. In this study, the surface roughness of tinted lenses containing gold nanoparticles of various sizes was analyzed using atomic force microscopy (AFM) at aspect ratio(surface to volume ratio) ranging from 1:1 to 1:10. The characteristics of the lenses were then confirmed. As a result, tinted lenses with different colors depending on the size of the gold nanoparticles were manufactured. The surface roughness of the lens decreased with increasing size of the gold nanoparticles. However, at aspect ratio of 1:10, increase in surface roughness was observed. In addition, it was confirmed that the wettability and antibacterial properties of the lens had the same effect according to the average surface roughness value. Therefore, it was confirmed that the addition of gold nanoparticles reduced the surface roughness of the lens, which had a great effect on properties such as wettability and antimicrobial properties of the lens. The produced copolymer controls the surface roughness of the lens, and thus it is judged that it can be used as a material for various ophthalmology applications.
Collapse
Affiliation(s)
| | | | - A-Young Sung
- Department of Optometry & Vision Science, Daegu Catholic University, Gyeongsan 38430, Republic of Korea; (S.-M.S.); (H.-I.P.)
| |
Collapse
|
3
|
Eissa NG, Eldehna WM, Abdelazim EB, Eissa RA, Mohamed HH, Diab NH, El Hassab MA, Elkaeed EB, Elsayed ZM, Sabet MA, Bakr MH, Aboelela A, Abdelshafi NA, Kamoun EA, Supuran CT, Elsabahy M, Allam AA. Morphologic Design of Nanogold Carriers for a Carbonic Anhydrase Inhibitor: Effect on Ocular Retention and Intraocular Pressure. Int J Pharm 2023:123161. [PMID: 37379891 DOI: 10.1016/j.ijpharm.2023.123161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Morphologic design of nanomaterials for a diversity of biomedical applications is of increasing interest. The aim of the current study is to construct therapeutic gold nanoparticles of different morphologies and investigate their effect on ocular retention and intraocular pressure in a glaucoma rabbit model. Poly(lactic-co-glycolic acid) (PLGA)-coated nanorods and nanospheres have been synthesized and loaded with carbonic anhydrase inhibitor (CAI), and characterized in vitro for their size, zeta potential and encapsulation efficiency. Nanosized PLGA-coated gold nanoparticles of both morphologies demonstrated high entrapment efficiency (˃ 98%) for the synthesized CAI and the encapsulation of the drug into the developed nanoparticles was confirmed via Fourier transform-infrared spectroscopy. In vivo studies revealed a significant reduction in intraocular pressure upon instillation of drug-loaded nanogold formulations compared to the marketed eye drops. Spherical nanogolds exhibited a superior efficacy compared to the rod-shaped counterparts, probably due to the enhanced ocular retention of spherical nanogolds within collagen fibers of the stroma, as illustrated by transmission electron microscopy imaging. Normal histological appearance was observed for the cornea and retina of the eyes treated with spherical drug-loaded nanogolds. Hence, incorporation of a molecularly-designed CAI into nanogold of tailored morphology may provide a promising strategy for management of glaucoma.
Collapse
Affiliation(s)
- Noura G Eissa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Badr University in Cairo Research Center and School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Esraa B Abdelazim
- Badr University in Cairo Research Center and School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Rana A Eissa
- Badr University in Cairo Research Center and School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Hend H Mohamed
- Badr University in Cairo Research Center and School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Nadeen H Diab
- Pharmaceutics Department, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut, Egypt
| | - Mahmoud A El Hassab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh Uinversity, Kafrelsheikh, Egypt
| | - Marwa A Sabet
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sphinx University, New-Assiut 71684, Egypt
| | - Marwa H Bakr
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ashraf Aboelela
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut 71515, Egypt
| | - Nahla A Abdelshafi
- Department of Pharmaceutical Analytical Chemistry, School of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Elbadawy A Kamoun
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), El Sherouk City, Suez Desert Road, Cairo 1183, Egypt; Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute, the City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Mahmoud Elsabahy
- Badr University in Cairo Research Center and School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA.
| | - Ayat A Allam
- Pharmaceutics Department, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut, Egypt; Pharmaceutics Department, Faculty of Pharmacy, Assiut university, Assiut 71526, Egypt
| |
Collapse
|
4
|
Talebian S, Mendes B, Conniot J, Farajikhah S, Dehghani F, Li Z, Bitoque D, Silva G, Naficy S, Conde J, Wallace GG. Biopolymeric Coatings for Local Release of Therapeutics from Biomedical Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207603. [PMID: 36782094 PMCID: PMC10131825 DOI: 10.1002/advs.202207603] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 06/18/2023]
Abstract
The deployment of structures that enable localized release of bioactive molecules can result in more efficacious treatment of disease and better integration of implantable bionic devices. The strategic design of a biopolymeric coating can be used to engineer the optimal release profile depending on the task at hand. As illustrative examples, here advances in delivery of drugs from bone, brain, ocular, and cardiovascular implants are reviewed. These areas are focused to highlight that both hard and soft tissue implants can benefit from controlled localized delivery. The composition of biopolymers used to achieve appropriate delivery to the selected tissue types, and their corresponding outcomes are brought to the fore. To conclude, key factors in designing drug-loaded biopolymeric coatings for biomedical implants are highlighted.
Collapse
Affiliation(s)
- Sepehr Talebian
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - Bárbara Mendes
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - João Conniot
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - Syamak Farajikhah
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - Zhongyan Li
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Diogo Bitoque
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - Gabriela Silva
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - Sina Naficy
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - João Conde
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - Gordon G. Wallace
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityUniversity of WollongongSydneyNSW2522Australia
| |
Collapse
|
5
|
Abdi B, Mofidfar M, Hassanpour F, Kirbas Cilingir E, Kalajahi SK, Milani PH, Ghanbarzadeh M, Fadel D, Barnett M, Ta CN, Leblanc RM, Chauhan A, Abbasi F. Therapeutic contact lenses for the treatment of corneal and ocular surface diseases: advances in extended and targeted drug delivery. Int J Pharm 2023; 638:122740. [PMID: 36804524 DOI: 10.1016/j.ijpharm.2023.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
The eye is one of the most important organs in the human body providing critical information on the environment. Many corneal diseases can lead to vision loss affecting the lives of people around the world. Ophthalmic drug delivery has always been a major challenge in the medical sciences. Since traditional methods are less efficient (∼ 5%) at delivering drugs to ocular tissues, contact lenses have generated growing interest in ocular drug delivery due to their potential to enhance drug bioavailability in ocular tissues. The main techniques used to achieve sustained release are discussed in this review, including soaking in drug solutions, incorporating drug into multilayered contact lenses, use of vitamin E barriers, molecular imprinting, nanoparticles, micelles and liposomes. The most clinically relevant results on different eye pathologies are presented. In addition, this review summarizes the benefits of contact lenses over eye drops, strategies for incorporating drugs into lenses to achieve sustained release, results of in vitro and in vivo studies, and the recent advances in the commercialization of therapeutic contact lenses for allergic conjunctivitis.
Collapse
Affiliation(s)
- Behnam Abdi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Stanford, CA, USA; School of Medicine, Stanford University, Stanford, CA, USA
| | - Fatemeh Hassanpour
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | | | - Sepideh K Kalajahi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Paria H Milani
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Mahsa Ghanbarzadeh
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Daddi Fadel
- Center for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Melissa Barnett
- University of California, Davis Eye Center, Sacramento, CA, USA
| | - Christopher N Ta
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL, USA.
| | - Anuj Chauhan
- Chemical and Biological Engineering Department, Colorado School of Mines, CO, USA.
| | - Farhang Abbasi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran.
| |
Collapse
|
6
|
Tian C, Zeng L, Tang L, Yu J, Ren M. Retraction Note to: Sustained Delivery of Timolol Using Nanostructured Lipid Carriers-Laden Soft Contact Lenses. AAPS PharmSciTech 2022; 23:222. [PMID: 35962288 DOI: 10.1208/s12249-022-02382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Chenfei Tian
- Ophthalmology Operating Room, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an, 710004, Shaanxi, China
| | - Lu Zeng
- Ophthalmology Operating Room, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an, 710004, Shaanxi, China
| | - Le Tang
- Nursing Department, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an, 710004, Shaanxi, China
| | - Jingni Yu
- Glaucoma Center, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an, 710004, Shaanxi, China
| | - Mei Ren
- Eye Surface Disease Center, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
7
|
Brinzolamide-loaded soft contact lens for ophthalmic delivery. Ther Deliv 2022; 13:233-247. [PMID: 35615865 DOI: 10.4155/tde-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: In this study, brinzolamide (BRZ) was loaded in balafilcon A silicone hydrogel soft contact lens to enhance delivery in glaucoma therapy. Materials & methods: BRZ-loaded soft contact lens was prepared by the soaking method with optimization of pH, temperature and concentration of drug loading solution. Results: At pH 7.4, loading temperature and concentration of 32°C and 3 mg/ml, respectively, enhanced drug loading capacity and release were observed. Diffusional experiments showed Higuchi model of release. BRZ loading brought no appreciable changes in the physical properties of soft contact lens, likewise, maintaining stability. Conclusion: The results demonstrated BRZ loading and delivery through silicone hydrogel soft contact lens which provides a potential alternative in glaucoma therapy.
Collapse
|
8
|
Xu Y, Li H. In vitro and in vivo evaluation of brimonidine loaded silica nanoparticles-laden silicone contact lenses to manage glaucoma. J Biomater Appl 2022; 37:333-343. [PMID: 35482359 DOI: 10.1177/08853282221090880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glaucoma is treated by frequent instillation of 0.2% w/v brimonidine tartrate eye drop solution, which showed poor ocular bioavailability of 1-3%. Medicated contact lenses can be used to improve the ocular drug bioavailability. However, drug loading in the contact lens matrix showed high burst release and changes the optophysical properties of the contact lens material. In this paper, a novel brimonidine loaded silica nanoparticles-laden silicone contact lenses (Bri-Si) were designed to achieve controlled drug delivery without altering the optophysical properties of the contact lens. Silica nanoparticles were prepared by polymerizing octadecyltrimethoxysilane (OTMS) molecules at the oil/water interface of microemulsion. Traditional soaking method (Bri-SM), direct brimonidine-loading method (Bri-DL) and microemulsion-laden contact lens (Bri-ME) were developed for comparison. The Bri-Si lens showed improved swelling, transmittance, oxygen permeability and lysozyme adherence compared to Bri-SM, Bri-DL and Bri-ME lenses. The Bri-DL lens showed high brimonidine leaching during extraction and sterilization steps, with low cumulative drug release. While, Bri-Si lens show controlled brimonidine release for 144 h. In a rabbit tear fluid model, the Bri-Si lens showed high brimonidine concentration for 96 h compared to Bri-ME lens and eye drop therapy. Based on histopathological studies of cornea, the Bri-Si lens was found to be safe for human applications. The data demonstrated the novel application of silica nanoparticles to control brimonidine release from the contact lens without altering the optophysical properties of the contact lens.
Collapse
Affiliation(s)
- Yunli Xu
- Department of Ophtalmology, 74723Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine (Zhenjiang Hospital of Traditional Chinese Medicine), Zhenjiang, Jiangsu Province, 212008, China
| | - Hongyi Li
- Department of Ophtalmology, 12432Heilongjiang University Hospital, Heilongjiang University, Harbin, Heilongjiang Province, 150080, China
| |
Collapse
|
9
|
Shariatinia Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|