1
|
de Morais FAP, De Oliveira ACV, Balbinot RB, Lazarin-Bidóia D, Ueda-Nakamura T, de Oliveira Silva S, da Silva Souza Campanholi K, da Silva Junior RC, Gonçalves RS, Caetano W, Nakamura CV. Multifunctional Nanoparticles as High-Efficient Targeted Hypericin System for Theranostic Melanoma. Polymers (Basel) 2022; 15:polym15010179. [PMID: 36616529 PMCID: PMC9824163 DOI: 10.3390/polym15010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Biotin, spermine, and folic acid were covalently linked to the F127 copolymer to obtain a new drug delivery system designed for HY-loaded PDT treatment against B16F10 cells. Chemical structures and binders quantification were performed by spectroscopy and spectrophotometric techniques (1NMR, HABA/Avidin reagent, fluorescamine assay). Critical micelle concentration, critical micelle temperature, size, polydispersity, and zeta potential indicate the hydrophobicity of the binders can influence the physicochemical parameters. Spermine-modified micelles showed fewer changes in their physical and chemical parameters than the F127 micelles without modification. Furthermore, zeta potential measurements suggest an increase in the physical stability of these carrier systems. The phototherapeutic potential was demonstrated using hypericin-loaded formulation against B16F10 cells, which shows that the combination of the binders on F127 copolymer micelles enhances the photosensitizer uptake and potentializes the photodynamic activity.
Collapse
Affiliation(s)
- Flávia Amanda Pedroso de Morais
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
- Department of Chemistry, State University of Maringá, Maringá 87020-900, PR, Brazil
- Correspondence: (F.A.P.d.M.); (C.V.N.); Tel.: +55-(44)-3011-3680 (F.A.P.d.M. & C.V.N.)
| | | | - Rodolfo Bento Balbinot
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Danielle Lazarin-Bidóia
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Tânia Ueda-Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Sueli de Oliveira Silva
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
| | | | | | - Renato Sonchini Gonçalves
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Celso Vataru Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
- Correspondence: (F.A.P.d.M.); (C.V.N.); Tel.: +55-(44)-3011-3680 (F.A.P.d.M. & C.V.N.)
| |
Collapse
|
2
|
Kazemi-Ashtiyani M, Hajipour-Verdom B, Satari M, Abdolmaleki P, Hosseinkhani S, Shaki H. Estimating the two graph dextran-stearic acid-spermine polymers based on iron oxide nanoparticles as carrier for gene delivery. Biopolymers 2022; 113:e23491. [PMID: 35560028 DOI: 10.1002/bip.23491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Non-viral gene carriers have shown noticeable potential in gene delivery because of limited side effects, biocompatibility, simplicity, and the ability to take advantage of electrostatic interactions. However, the low transfection rate of non-viral vectors under physiological conditions is controversial. This study aimed to decrease the transfection time using a static magnetic field. We used self-assembled cationic polysaccharides based on dextran-stearic acid-spermine (DSASP) conjugates associated with Fe3 O4 superparamagnetic nanoparticles to investigate their potential as gene carriers to promote the target delivery. Our findings illustrate that the magnetic nanoparticles are spherical with a positive surface charge and exhibit superparamagnetic behavior. The DSASP-pDNA/Fe3 O4 complexes offered a strong pDNA condensation, protection against DNase degradation, and significant cell viability in HEK 293T cells. Our results demonstrated that although conjugation of stearic acid could play a role in transfection efficiency, DSASP magnetic carriers with more spermine derivatives showed better affinity between the amphiphilic polymer and the negatively charged cell membrane.
Collapse
Affiliation(s)
| | - Behnam Hajipour-Verdom
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Satari
- Department of Biology, Faculty of Sciences, Malayer University, Malayer, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Shaki
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.,Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University Denmark, DTU Health Tech, Kongens Lyngby, Denmark
| |
Collapse
|