1
|
Chen H, Fang D, Wang X, Gong Y, Ji Y, Pan H. Fabrication of osmotic pump tablets utilizing semisolid extrusion three-dimensional printing technology. Int J Pharm 2024; 665:124668. [PMID: 39245086 DOI: 10.1016/j.ijpharm.2024.124668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/11/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
The utilization of three-dimensional (3D) printing technology is prevalent in the fabrication of oral sustained release preparations; however, there is a lack of research on 3D-printed osmotic pump tablets. A 3D-printed core-shell structure bezafibrate osmotic pump tablet was developed based on the characteristics of rapid absorption and short half-life of bezafibrate, utilizing semisolid extrusion (SSE) 3D printing technology. First, the properties of different shell materials were investigated to define the composition of the shell, and ultimately, the optimal formulation was found to be ethyl cellulose:cellulose acetate:polyethylene glycol = 2:1:2. The formulation of the tablet core was defined based on the printing performance and release behavior. The formulation consisted of bezafibrate, lactis anhydrous, sodium bicarbonate, sodium alginate, polyethylene oxide and sodium dodecyl sulfate at a ratio of 400:400:300:80:50:50. The tablet was capable of achieving zero-order release. The physicochemical properties were also characterized. The pharmacokinetic data analysis indicated that there were no statistically significant differences in the pharmacokinetic parameters between the 3D-printed tablets and the reference listed drugs. There was a strong correlation between the in vitro and in vivo results for the 3D-printed tablets. The results showed that SSE printing is a practical approach for manufacturing osmotic pump tablets.
Collapse
Affiliation(s)
- Hao Chen
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Dongyang Fang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xiangyu Wang
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Ye Gong
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Yang Ji
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China.
| |
Collapse
|
2
|
Magariños-Triviño M, Díaz-Torres E, Suárez-González J, Santoveña-Estévez A, Fariña JB. The Design of Novel 3D-Printed, Moulded, and Oral Viscous Budesonide Formulations for Paediatrics: A Comparative Evaluation of Their Mucoadhesive Properties. Pharmaceutics 2024; 16:1338. [PMID: 39458665 PMCID: PMC11510639 DOI: 10.3390/pharmaceutics16101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Paediatric eosinophilic oesophagitis (EoE) treatment is challenging due to the limited number of age-appropriate formulations. This study aims to develop and evaluate oral viscous suspensions and solid formulations of budesonide (BUD), focusing on their in vitro mucoadhesive properties, to enhance drug delivery and therapeutic outcomes in paediatric EoE. METHODS This study encompasses the development of oral viscous suspensions and orodispersible solid formulations (moulded tablets and 3D-printed dosage forms) containing BUD. The formulations underwent quality control tests as per the European Pharmacopoeia, chemical stability assessments, and an in vitro evaluation of their mucoadhesiveness properties. RESULTS A validated analytical method enabled accurate BUD quantification and efficient extraction, and all developed formulations demonstrated chemical stability for 30 days, meeting Ph. Eur. quality standards. Three-dimensional printing using SSE successfully produced 1 mg and 0.5 mg BUD printlets, complying with quality tests for conventional tablets. Formulations containing xanthan gum (L2-XG and P1-0.5-XG) exhibited superior mucoadhesive properties. L2-XG showed significantly higher mucoadhesion than L1-MC. Among the solid formulations, P1-0.5-XG demonstrated the highest mucoadhesive properties. CONCLUSIONS This is the first study to develop solid oral dosage forms of BUD at a very low dose, specifically for paediatric use. The results highlight the potential of 3D printing for developing individualised orodispersible BUD formulations with improved bioadhesion for paediatric EoE treatment. The L2-XG formulation and the XG-containing printlets are the most promising formulations in terms of increasing contact time with the oesophageal mucosa, which could translate into improved therapeutic efficacy in this patient population.
Collapse
Affiliation(s)
- María Magariños-Triviño
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna, 38200 La Laguna, Spain; (E.D.-T.); (J.S.-G.); (A.S.-E.)
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Spain
- Programa de Doctorado en Ciencias Médicas y Farmacéuticas, Desarrollo y Calidad de Vida, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Eduardo Díaz-Torres
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna, 38200 La Laguna, Spain; (E.D.-T.); (J.S.-G.); (A.S.-E.)
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Spain
- Programa de Doctorado en Ciencias Médicas y Farmacéuticas, Desarrollo y Calidad de Vida, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Javier Suárez-González
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna, 38200 La Laguna, Spain; (E.D.-T.); (J.S.-G.); (A.S.-E.)
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Spain
| | - Ana Santoveña-Estévez
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna, 38200 La Laguna, Spain; (E.D.-T.); (J.S.-G.); (A.S.-E.)
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Spain
| | - José B. Fariña
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna, 38200 La Laguna, Spain; (E.D.-T.); (J.S.-G.); (A.S.-E.)
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Spain
| |
Collapse
|
3
|
Sun W, Rantanen J, Genina N. Lessons to Learn for 3D Printing of Drug Products by Semisolid Extrusion (SSE). J Pharm Sci 2024; 113:2957-2966. [PMID: 38852672 DOI: 10.1016/j.xphs.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Semisolid extrusion (SSE) 3D printing (3DP) technology is emerging due to its simplicity and potential for on-site manufacturing of personalized drug products with tailored functionality (dose, release profile), as well as recognizability (size, shape, color). However, even a minor change in the composition of the ink (the feedstock material) and the printing process parameters can largely influence the outcome of printing. This paper summarizes the recent SSE 3DP studies, where the important factors affecting the quality of the printed drug products are discussed. Further challenges are showcased by introducing a case study focusing on the design of oral theophylline immediate-release drug products. The identified crucial factors, such as the printing hardware and connected software, printing parameters, and composition of the ink are discussed. Especially, the rheological properties of the ink during the printing process, together with solidification, mechanical properties, and morphology studies of already printed products are deliberated to gain more understanding of the printability of drug products by SSE. This work aims to provide an overview of design aspects related to SSE-based fabrication of personalized drug products.
Collapse
Affiliation(s)
- Weining Sun
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Natalja Genina
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
4
|
Ianno V, Vurpillot S, Prillieux S, Espeau P. Pediatric Formulations Developed by Extrusion-Based 3D Printing: From Past Discoveries to Future Prospects. Pharmaceutics 2024; 16:441. [PMID: 38675103 PMCID: PMC11054634 DOI: 10.3390/pharmaceutics16040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Three-dimensional printing (3DP) technology in pharmaceutical areas is leading to a significant change in controlled drug delivery and pharmaceutical product development. Pharmaceutical industries and academics are becoming increasingly interested in this innovative technology due to its inherent inexpensiveness and rapid prototyping. The 3DP process could be established in the pharmaceutical industry to replace conventional large-scale manufacturing processes, particularly useful for personalizing pediatric drugs. For instance, shape, size, dosage, drug release and multi-drug combinations can be tailored according to the patient's needs. Pediatric drug development has a significant global impact due to the growing needs for accessible age-appropriate pediatric medicines and for acceptable drug products to ensure adherence to the prescribed treatment. Three-dimensional printing offers several significant advantages for clinical pharmaceutical drug development, such as the ability to personalize medicines, speed up drug manufacturing timelines and provide on-demand drugs in hospitals and pharmacies. The aim of this article is to highlight the benefits of extrusion-based 3D printing technology. The future potential of 3DP in pharmaceuticals has been widely shown in the last few years. This article summarizes the discoveries about pediatric pharmaceutical formulations which have been developed with extrusion-based technologies.
Collapse
Affiliation(s)
- Veronica Ianno
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, 75006 Paris, France;
- Delpharm Reims, 51100 Reims, France; (S.V.); (S.P.)
| | | | | | - Philippe Espeau
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, 75006 Paris, France;
| |
Collapse
|
5
|
Carou-Senra P, Rodríguez-Pombo L, Monteagudo-Vilavedra E, Awad A, Alvarez-Lorenzo C, Basit AW, Goyanes A, Couce ML. 3D Printing of Dietary Products for the Management of Inborn Errors of Intermediary Metabolism in Pediatric Populations. Nutrients 2023; 16:61. [PMID: 38201891 PMCID: PMC10780524 DOI: 10.3390/nu16010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The incidence of Inborn Error of Intermediary Metabolism (IEiM) diseases may be low, yet collectively, they impact approximately 6-10% of the global population, primarily affecting children. Precise treatment doses and strict adherence to prescribed diet and pharmacological treatment regimens are imperative to avert metabolic disturbances in patients. However, the existing dietary and pharmacological products suffer from poor palatability, posing challenges to patient adherence. Furthermore, frequent dose adjustments contingent on age and drug blood levels further complicate treatment. Semi-solid extrusion (SSE) 3D printing technology is currently under assessment as a pioneering method for crafting customized chewable dosage forms, surmounting the primary limitations prevalent in present therapies. This method offers a spectrum of advantages, including the flexibility to tailor patient-specific doses, excipients, and organoleptic properties. These elements are pivotal in ensuring the treatment's efficacy, safety, and adherence. This comprehensive review presents the current landscape of available dietary products, diagnostic methods, therapeutic monitoring, and the latest advancements in SSE technology. It highlights the rationale underpinning their adoption while addressing regulatory aspects imperative for their seamless integration into clinical practice.
Collapse
Affiliation(s)
- Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Einés Monteagudo-Vilavedra
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, RICORS, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
| | - Atheer Awad
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK;
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- FABRX Artificial Intelligence, 27543 O Saviñao, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- FABRX Artificial Intelligence, 27543 O Saviñao, Spain
| | - María L. Couce
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, RICORS, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
| |
Collapse
|
6
|
Kyser AJ, Mahmoud MY, Herold SE, Lewis WG, Lewis AL, Steinbach-Rankins JM, Frieboes HB. Formulation and characterization of pressure-assisted microsyringe 3D-printed scaffolds for controlled intravaginal antibiotic release. Int J Pharm 2023; 641:123054. [PMID: 37207856 PMCID: PMC10330500 DOI: 10.1016/j.ijpharm.2023.123054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Bacterial vaginosis (BV) is a highly recurrent vaginal condition linked with many health complications. Topical antibiotic treatments for BV are challenged with drug solubility in vaginal fluid, lack of convenience and user adherence to daily treatment protocols, among other factors. 3D-printed scaffolds can provide sustained antibiotic delivery to the female reproductive tract (FRT). Silicone vehicles have been shown to provide structural stability, flexibility, and biocompatibility, with favorable drug release kinetics. This study formulates and characterizes novel metronidazole-containing 3D-printed silicone scaffolds for eventual application to the FRT. Scaffolds were evaluated for degradation, swelling, compression, and metronidazole release in simulated vaginal fluid (SVF). Scaffolds retained high structural integrity and sustained release. Minimal mass loss (<6%) and swelling (<2%) were observed after 14 days in SVF, relative to initial post-cure measurements. Scaffolds cured for 24 hr (50 °C) demonstrated elastic behavior under 20% compression and 4.0 N load. Scaffolds cured for 4 hr (50 °C), followed by 72 hr (4 °C), demonstrated the highest, sustained, metronidazole release (4.0 and 27.0 µg/mg) after 24 hr and 14 days, respectively. Based upon daily release profiles, it was observed that the 24 hr timepoint had the greatest metronidazole release of 4.08 μg/mg for scaffolds cured at 4 hr at 50 °C followed by 72 hr at 4 °C. For all curing conditions, release of metronidazole after 1 and 7 days showed > 4.0-log reduction in Gardnerella concentration. Negligible cytotoxicity was observed in treated keratinocytes comparable to untreated cells, This study shows that pressure-assisted microsyringe 3D-printed silicone scaffolds may provide a versatile vehicle for sustained metronidazole delivery to the FRT.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Sydney E Herold
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Warren G Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| |
Collapse
|
7
|
Díaz-Torres E, Suárez-González J, Monzón-Rodríguez CN, Santoveña-Estévez A, Fariña JB. Characterization and Validation of a New 3D Printing Ink for Reducing Therapeutic Gap in Pediatrics through Individualized Medicines. Pharmaceutics 2023; 15:1642. [PMID: 37376090 DOI: 10.3390/pharmaceutics15061642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
3D printing technology can be used to develop individualized medicines in hospitals and pharmacies, allowing a high degree of personalization and the possibility to adjust the dose of the API based on the quantity of material extruded. The main goal of incorporating this technology is to have a stock of API-load print cartridges that could be used at different storage times and for different patients. However, it is necessary to study the extrudability, stability, and buildability of these print cartridges during storage time. A paste-like formulation containing hydrochlorothiazide as a model drug was prepared and distributed in five print cartridges, each of which was studied for different storage times (0 h-72 h) and conditions, for repeated use on different days. For each print cartridge, an extrudability analysis was performed, and subsequently, 100 unit forms of 10 mg hydrochlorothiazide were printed. Finally, various dosage units containing different doses were printed, taking into account the optimized printing parameters based on the results of the extrudability analysis carried out previously. An appropriate methodology for the rapid development of appropriate SSE 3DP inks for pediatrics was established and evaluated. The extrudability analysis and several parameters allowed the detection of changes in the mechanical behavior of the printing inks, the pressure interval of the steady flow, and the selection of the volume of ink to be extruded to obtain each of the required doses. The print cartridges were stable for up to 72 h after processing, and orodispersible printlets containing 6 mg to 24 mg of hydrochlorothiazide can be produced using the same print cartridge and during the same printing process with guaranteed content and chemical stability. The proposed workflow for the development of new printing inks containing APIs will allow the optimization of feedstock material and human resources in pharmacy or hospital pharmacy services, thus speeding up their development and reducing costs.
Collapse
Affiliation(s)
- Eduardo Díaz-Torres
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Tenerife, Spain
- Programa de Doctorado en Ciencias Médicas y Farmacéuticas, Desarrollo y Calidad de Vida, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Javier Suárez-González
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Tenerife, Spain
| | - Cecilia N Monzón-Rodríguez
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
| | - Ana Santoveña-Estévez
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Tenerife, Spain
| | - José B Fariña
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Tenerife, Spain
| |
Collapse
|
8
|
Roche A, Sanchez-Ballester NM, Aubert A, Rossi JC, Begu S, Soulairol I. Preliminary Study on the Development of Caffeine Oral Solid Form 3D Printed by Semi-Solid Extrusion for Application in Neonates. AAPS PharmSciTech 2023; 24:122. [PMID: 37225888 DOI: 10.1208/s12249-023-02582-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
Apnea of prematurity can be treated with a body-weight-adjusted dosage of caffeine. Semi-solid extrusion (SSE) 3D printing represents an interesting approach to finely tailor personalized doses of active ingredients. To improve compliance and ensure the right dose in infants, drug delivery systems such as oral solid forms (orodispersible film, dispersive form, and mucoadhesive form) can be considered. The aim of this work was to obtain a flexible-dose system of caffeine by SSE 3D printing by testing different excipients and printing parameters. Gelling agents (sodium alginate (SA) and hydroxypropylmethyl cellulose (HPMC)) were used to obtain a drug-loaded hydrogel matrix. Disintegrants (sodium croscarmellose (SC) and crospovidone (CP)) were tested for get rapid release of caffeine. The 3D models were patterned by computer-aided design with variable thickness, diameter, infill densities, and infill patterns. The oral forms produced from the formulation containing 35% caffeine, 8.2% SA, 4.8% HPMC, and 52% SC (w/w) were found to have good printability, achieving doses approaching to those used in neonatology (between 3 and 10 mg of caffeine for infants weighing approximately between 1 and 4 kg). However, disintegrants, especially SC, acted more as binder/filler, showing interesting properties to maintain the shape after extrusion and enhance printability without a significant effect on caffeine release.
Collapse
Affiliation(s)
- Agnès Roche
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Noelia M Sanchez-Ballester
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
- Department of Pharmacy, Nîmes University Hospital, Nîmes, France.
| | - Adrien Aubert
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Sylvie Begu
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ian Soulairol
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
- Department of Pharmacy, Nîmes University Hospital, Nîmes, France.
| |
Collapse
|
9
|
Alalaiwe A, Alsenaidy MA, Almalki ZS, Fayed MH. Development and Optimization of Sildenafil Orodispersible Mini-Tablets (ODMTs) for Treatment of Pediatric Pulmonary Hypertension Using Response Surface Methodology. Pharmaceutics 2023; 15:pharmaceutics15030923. [PMID: 36986784 PMCID: PMC10056513 DOI: 10.3390/pharmaceutics15030923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/19/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The availability of age-appropriate oral dosage forms for pediatric patients has remained a challenge. Orodispersible mini-tablets (ODMTs) are a promising delivery system for pediatric patients. The purpose of this work was the development and optimization of sildenafil ODMTs as a new dosage form for the treatment of pulmonary hypertension in children using a design-of-experiment (DoE) approach. A two-factor, three levels (32) full-factorial design was employed to obtain the optimized formulation. The levels of microcrystalline cellulose (MCC; 10–40% w/w) and partially pre-gelatinized starch (PPGS; 2–10% w/w) were set as independent formulation variables. In addition, mechanical strength, disintegration time (DT), and percent drug release were set as critical quality attributes (CQAs) of sildenafil ODMTs. Further, formulation variables were optimized using the desirability function. ANOVA analysis proved that MCC and PPGS had a significant (p < 0.05) impact on CQAs of sildenafil ODMTs with a pronounced influence of PPGS. The optimized formulation was achieved at low (10% w/w) and high (10% w/w) levels of MCC and PPGS, respectively. The optimized sildenafil ODMTs showed crushing strength of 4.72 ± 0.34 KP, friability of 0.71 ± 0.04%, DT of 39.11 ± 1.03 s, and sildenafil release of 86.21 ± 2.41% after 30 min that achieves the USP acceptance criteria for ODMTs. Validation experiments have shown that the acceptable prediction error (<5%) indicated the robustness of the generated design. In conclusion, sildenafil ODMTs have been developed as a suitable oral formulation for the treatment of pediatric pulmonary hypertension using the fluid bed granulation process and the DoE approach.
Collapse
Affiliation(s)
- Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Mohammad A. Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ziyad S. Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Mohamed H. Fayed
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
- Correspondence:
| |
Collapse
|
10
|
Pistone M, Racaniello GF, Rizzi R, Iacobazzi RM, Arduino I, Lopalco A, Lopedota AA, Denora N. Direct cyclodextrin based powder extrusion 3D printing of budesonide loaded mini-tablets for the treatment of eosinophilic colitis in paediatric patients. Int J Pharm 2023; 632:122592. [PMID: 36626971 DOI: 10.1016/j.ijpharm.2023.122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to combine direct powder extrusion (DPE) 3D printing and fluid bed coating techniques to create a budesonide (BD) loaded solid oral formulations for the treatment of eosinophilic colitis (EC) in paediatric patients. The preferred medication for EC treatment is BD, which has drawbacks due to its poor water solubility and low absorption. Additionally, since commercially available medications for EC treatment are created and approved for adult patients, administering them to children sometimes requires an off-label use and an impromptu handling, which can result in therapeutic ineffectiveness. The DPE 3D approach was investigated to create Mini-Tablets (MTs) to suit the swallowing, palatability, and dose flexibility control requirements needed by paediatric patients. Additionally, DPE 3D and the inclusion of hydroxypropyl-β-cyclodextrin in the initial powder mixture allowed for an improvement in the solubility and rate of BD dissolution in aqueous medium. Then, to accomplish a site-specific drug release at the intestinal level, MTs were coated with a layer of Eudragit FS 30D, an enteric polymer responsive at pH > 7.0 values. In vitro release experiments showed that film-coated MTs were suitable in terms of size and dose, enabling potential therapeutic customization and targeted delivery of BD to the colon.
Collapse
Affiliation(s)
- Monica Pistone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, 70125 Bari, Italy
| | | | - Rosanna Rizzi
- Institute of Crystallography-CNR, Amendola St. 122/o, 70126 Bari, Italy
| | - Rosa Maria Iacobazzi
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, 70125 Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, 70125 Bari, Italy
| | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, 70125 Bari, Italy
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, 70125 Bari, Italy.
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, 70125 Bari, Italy.
| |
Collapse
|
11
|
Cornilă A, Iurian S, Tomuță I, Porfire A. Orally Dispersible Dosage Forms for Paediatric Use: Current Knowledge and Development of Nanostructure-Based Formulations. Pharmaceutics 2022; 14:pharmaceutics14081621. [PMID: 36015247 PMCID: PMC9414456 DOI: 10.3390/pharmaceutics14081621] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
The paediatric population has always suffered from a lack of medicines tailored to their needs, especially in terms of accurate dosage, stability and acceptability. Orodispersible dosage forms have gone through a resurrection as an alternative to liquid formulations or fractioned solid formulations, although they are still subject to several inconveniences, among which the unpleasant taste and the low oral bioavailability of the API are the most significant hurdles in the way of achieving an optimal drug product. Nanostructures can address these inconveniences through their size and variety, owing to the plethora of materials that can be used in their manufacturing. Through the formation and functionalisation of nanostructures, followed by their inclusion in orodispersible dosage forms, safe, stable and acceptable medicines intended for paediatric use can be developed.
Collapse
|
12
|
Funk NL, Fantaus S, Beck RCR. Immediate release 3D printed oral dosage forms: How different polymers have been explored to reach suitable drug release behaviour. Int J Pharm 2022; 625:122066. [PMID: 35926751 DOI: 10.1016/j.ijpharm.2022.122066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
Three-dimensional (3D) printing has been gaining attention as a new technological approach to obtain immediate release (IR) dosage forms. The versatility conferred by 3D printing techniques arises from the suitability of using different polymeric materials in the production of solids with different porosities, geometries, sizes, and infill patterns. The appropriate choice of polymer can facilitate in reaching IR specifications and afford other specific properties to 3D printed solid dosage forms. This review aims to provide an overview of the polymers that have been employed in the development of IR 3D printed dosage forms, mainly considering their in vitro drug release behaviour. The physicochemical and mechanical properties of the IR 3D printed dosage forms will also be discussed, together with the manufacturing process strategies. Up to now, methacrylic polymers, cellulosic polymers, vinyl derivatives, glycols and different polymeric blends have been explored to produce IR 3D printed dosage forms. Their effects on drug release profiles are critically discussed here, giving a complete overview to drive formulators towards a rational choice of polymeric material and thus contributing to future studies in 3D printing of pharmaceuticals.
Collapse
Affiliation(s)
- Nadine Lysyk Funk
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Stephani Fantaus
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
13
|
Bracken L, Habashy R, McDonough E, Wilson F, Shakeshaft J, Ohia U, Garcia-Sorribes T, Isreb A, Alhnan MA, Peak M. Creating Acceptable Tablets 3D (CAT 3D): A Feasibility Study to Evaluate the Acceptability of 3D Printed Tablets in Children and Young People. Pharmaceutics 2022; 14:pharmaceutics14030516. [PMID: 35335892 PMCID: PMC8954179 DOI: 10.3390/pharmaceutics14030516] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
3D printing (3DP) has been proposed as a novel approach for personalising dosage forms for children and young people (CYP). Owing to its low cost and the lack of need for finishing steps, fused deposing modelling (FDM) 3DP has been heavily researched in solid dosage forms (SDFs) manufacturing. However, the swallowability and overall acceptability of 3D printed dosage forms are yet to be established. This work is the first to evaluate the acceptability of different sized 3D printed placebo SDFs in CYP (aged 4–12 years). All participants had previously participated in a feasibility study (CAT study) that assessed the swallowability and acceptability of different sized GMP manufactured placebo conventional film-coated tablets, and therefore only attempted to swallow one 3D printed tablet. The participants assessed the swallowability, acceptability, mouthfeel, volume of water consumed, and taste of the sample using a 5-point hedonic facial scale on a participant questionnaire. A total of 30 participants were recruited, 87% of whom successfully swallowed the 3D printed tablet that they attempted to take. Attributes of the 3D printed tablets were scored as acceptable by the following percentage of participants—swallowability (80%), mouthfeel/texture (87%), the volume of water consumed (80%), taste (93%), and overall acceptability (83%). Overall, 77% of children reported they would be happy to take the tablet every day if it was a medicine. Participants were also asked which tablets felt better in the mouth—the film-coated tablets or the 3D printed tablets, and the most popular response (43%) was that both were acceptable. This study shows that FDM-based 3D printed SDFs may be a suitable dosage form for children aged 4–12 years. The results from this feasibility study will be used to inform a larger, definitive study looking at the acceptability of 3D printed tablets in children.
Collapse
Affiliation(s)
- Louise Bracken
- Paediatric Medicines Research Unit, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (L.B.); (E.M.); (J.S.)
| | - Rober Habashy
- School of Medicine and Biomedical Science, University of Central Lancashire, Preston PR1 2HE, UK; (R.H.); (T.G.-S.); (A.I.)
| | - Emma McDonough
- Paediatric Medicines Research Unit, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (L.B.); (E.M.); (J.S.)
| | - Fiona Wilson
- NIHR Alder Hey Clinical Research Facility, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (F.W.); (U.O.)
| | - Joanne Shakeshaft
- Paediatric Medicines Research Unit, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (L.B.); (E.M.); (J.S.)
| | - Udeme Ohia
- NIHR Alder Hey Clinical Research Facility, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (F.W.); (U.O.)
| | - Tamar Garcia-Sorribes
- School of Medicine and Biomedical Science, University of Central Lancashire, Preston PR1 2HE, UK; (R.H.); (T.G.-S.); (A.I.)
| | - Abdullah Isreb
- School of Medicine and Biomedical Science, University of Central Lancashire, Preston PR1 2HE, UK; (R.H.); (T.G.-S.); (A.I.)
| | - Mohamed A. Alhnan
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King’s College, London SE1 9NH, UK
- Correspondence: (M.A.A.); (M.P.); Tel.: +44-(0)20-7848-7265 (M.A.A.)
| | - Matthew Peak
- Paediatric Medicines Research Unit, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (L.B.); (E.M.); (J.S.)
- NIHR Alder Hey Clinical Research Facility, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (F.W.); (U.O.)
- Correspondence: (M.A.A.); (M.P.); Tel.: +44-(0)20-7848-7265 (M.A.A.)
| |
Collapse
|