1
|
Deljavan Ghodrati A, Comoglu T. An overview on recent approaches for colonic drug delivery systems. Pharm Dev Technol 2024; 29:566-581. [PMID: 38813948 DOI: 10.1080/10837450.2024.2362353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Colon-targeted drug delivery systems have garnered significant interest as potential solutions for delivering various medications susceptible to acidic and catalytic degradation in the gastrointestinal (GI) tract or as a means of treating colonic diseases naturally with fewer overall side effects. The increasing demand for patient-friendly drug administration underscores the importance of colonic drug delivery, particularly through noninvasive methods like nanoparticulate drug delivery technologies. Such systems offer improved patient compliance, cost reduction, and therapeutic advantages. This study places particular emphasis on formulations and discusses recent advancements in various methods for designing colon-targeted drug delivery systems and their medicinal applications.
Collapse
Affiliation(s)
- Aylin Deljavan Ghodrati
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Tansel Comoglu
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Ferraro F, Sonnleitner L, Neut C, Mahieux S, Verin J, Siepmann J, Siepmann F. Colon targeting in rats, dogs and IBD patients with species-independent film coatings. Int J Pharm X 2024; 7:100233. [PMID: 38379554 PMCID: PMC10876578 DOI: 10.1016/j.ijpx.2024.100233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Polysaccharides were identified, which allow for colon targeting in human Inflammatory Bowel Disease (IBD) patients, as well as in rats and dogs (which are frequently used as animals in preclinical studies). The polysaccharides are degraded by colonic enzymes (secreted by bacteria), triggering the onset of drug release at the target site. It has to be pointed out that the microbiota in rats, dogs and humans substantially differ. Thus, the performance of this type of colon targeting system observed in animals might not be predictive for patients. The aim of this study was to limit this risk. Different polysaccharides were exposed to culture medium inoculated with fecal samples from IBD patients, healthy dogs and "IBD rats" (in which colonic inflammation was induced). Dynamic changes in the pH of the culture medium were used as an indicator for the proliferation of the bacteria and, thus, the potential of the polysaccharides to serve as their substrate. Fundamental differences were observed with respect to the extent of the pH variations as well as their species-dependency. The most promising polysaccharides were used to prepare polymeric film coatings surrounding 5-aminosaliciylic acid (5-ASA)-loaded starter cores. To limit premature polysaccharide dissolution/swelling in the upper gastro intestinal tract, ethylcellulose was also included in the film coatings. Drug release was monitored upon exposure to culture medium inoculated with fecal samples from IBD patients, healthy dogs and "IBD rats". For reasons of comparison, also 5-ASA release in pure culture medium was measured. Most film coatings showed highly species-dependent drug release kinetics or limited colon targeting capacity. Interestingly, extracts from aloe vera and reishi (a mushroom) showed a promising potential for colon targeting in all species.
Collapse
Affiliation(s)
- F. Ferraro
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | | | - C. Neut
- Univ. Lille, Inserm, CHU Lille, U1286, F-59000 Lille, France
| | - S. Mahieux
- Univ. Lille, Inserm, CHU Lille, U1286, F-59000 Lille, France
| | - J. Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J. Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - F. Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| |
Collapse
|
3
|
Moutaharrik S, Palugan L, Cerea M, Meroni G, Casagni E, Roda G, Martino PA, Gazzaniga A, Maroni A, Foppoli A. Colon Drug Delivery Systems Based on Swellable and Microbially Degradable High-Methoxyl Pectin: Coating Process and In Vitro Performance. Pharmaceutics 2024; 16:508. [PMID: 38675167 PMCID: PMC11054370 DOI: 10.3390/pharmaceutics16040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Oral colon delivery systems based on a dual targeting strategy, harnessing time- and microbiota-dependent release mechanisms, were designed in the form of a drug-containing core, a swellable/biodegradable polysaccharide inner layer and a gastroresistant outer film. High-methoxyl pectin was employed as the functional coating polymer and was applied by spray-coating or powder-layering. Stratification of pectin powder required the use of low-viscosity hydroxypropyl methylcellulose in water solution as the binder. These coatings exhibited rough surfaces and higher thicknesses than the spray-coated ones. Using a finer powder fraction improved the process outcome, coating quality and inherent barrier properties in aqueous fluids. Pulsatile release profiles and reproducible lag phases of the pursued duration were obtained from systems manufactured by both techniques. This performance was confirmed by double-coated systems, provided with a Kollicoat® MAE outer film that yielded resistance in the acidic stage of the test. Moreover, HM pectin-based coatings manufactured by powder-layering, tested in the presence of bacteria from a Crohn's disease patient, showed earlier release, supporting the role of microbial degradation as a triggering mechanism at the target site. The overall results highlighted viable coating options and in vitro release characteristics, sparking new interest in naturally occurring pectin as a coating agent for oral colon delivery.
Collapse
Affiliation(s)
- Saliha Moutaharrik
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| | - Luca Palugan
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| | - Matteo Cerea
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| | - Gabriele Meroni
- Department of Biomedical, Surgical and Dental Sciences, One Health Unit, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Eleonora Casagni
- Department of Pharmaceutical Sciences, Section of Medicinal Chemistry “P. Pratesi”, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Section of Medicinal Chemistry “P. Pratesi”, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Piera Anna Martino
- Department of Biomedical, Surgical and Dental Sciences, One Health Unit, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Andrea Gazzaniga
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| | - Alessandra Maroni
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| | - Anastasia Foppoli
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| |
Collapse
|
4
|
Bhattacharya S, Sangave PC, Belemkar S, Anjum MM. pH-Sensitive Nanoparticles of Epigallocatechin-3-Gallate in Enhanced Colorectal Cancer Therapy. Nanomedicine (Lond) 2024; 19:459-481. [PMID: 38223987 DOI: 10.2217/nnm-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024] Open
Abstract
AIM Encapsulating epigallocatechin-3-gallate (EGCG) in pH-sensitive polymeric nanoparticles for targeted delivery of drugs could revolutionize colorectal cancer treatment. MATERIALS & METHODS Nanoparticles were synthesized to release drugs at colon pH. Dynamic light scattering measured their average diameter and ζ-potential, while differential scanning calorimetry and x-ray diffraction assessed EGCG encapsulation. RESULTS The nanoparticles showed stability and bioavailability in the gastrointestinal tract, efficiently encapsulating and releasing over 93% of EGCG at pH 7.2. They enhanced cytotoxicity against HT-29 cells and demonstrated antibacterial properties, increasing apoptosis and cell cycle arrest. CONCLUSION The study underscores the potential of nanoparticles in enhancing EGCG delivery for colorectal cancer therapy, aiming to minimize side effects and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Preeti Chidambar Sangave
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sateesh Belemkar
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Vile Parle (W), Mumbai, 400056, Maharashtra, India
| | - Md Meraj Anjum
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India
| |
Collapse
|
5
|
Moutaharrik S, Meroni G, Soggiu A, Foppoli A, Cerea M, Palugan L, Caloni F, Martino PA, Gazzaniga A, Maroni A. Guar gum as a microbially degradable component for an oral colon delivery system based on a combination strategy: formulation and in vitro evaluation. Drug Deliv Transl Res 2024; 14:826-838. [PMID: 37824039 DOI: 10.1007/s13346-023-01439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
Oral colon delivery has widely been pursued exploiting naturally occurring polysaccharides degraded by the resident microbiota. However, their hydrophilicity may hinder the targeting performance. The aim of the present study was to manufacture and evaluate a double-coated delivery system leveraging intestinal microbiota, pH, and transit time for reliable colonic release. This system comprised a tablet core, a hydroxypropyl methylcellulose (HPMC) inner layer and an outer coating based on Eudragit® S and guar gum. The tablets were loaded with paracetamol, selected as a tracer drug because of the well-known analytical profile and lack of major effects on bacterial viability. The HPMC and Eudragit® S layers were applied by film-coating. Tested for in vitro release, the double-coated systems showed gastroresistance in 0.1 N HCl followed by lag phases of consistent duration in phosphate buffer pH 7.4, imparted by the HPMC layer and synergistically extended by the Eudragit® S/guar gum one. In simulated colonic fluid with fecal bacteria from an inflammatory bowel disease patient, release was faster than in the presence of β-mannanase and in control culture medium. The bacteria-containing fluid was obtained by an experimental procedure making multiple tests possible from a single sampling and processing run. Thus, the study conducted proved the feasibility of the delivery system and ability of guar gum to trigger release in the presence of colon bacteria without impairing the barrier properties of the coating. Finally, it allowed an advantageous simulated colonic fluid preparation procedure to be set up, reducing the time, costs, and complexity of testing and enhancing replicability.
Collapse
Affiliation(s)
- Saliha Moutaharrik
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Gabriele Meroni
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, One Health Unit, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Alessio Soggiu
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, One Health Unit, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Anastasia Foppoli
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Matteo Cerea
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Luca Palugan
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Francesca Caloni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milan, Italy
| | - Piera Anna Martino
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, One Health Unit, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy.
| | - Andrea Gazzaniga
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Alessandra Maroni
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| |
Collapse
|
6
|
Asadi M, Salehi Z, Akrami M, Hosseinpour M, Jockenhövel S, Ghazanfari S. 3D printed pH-responsive tablets containing N-acetylglucosamine-loaded methylcellulose hydrogel for colon drug delivery applications. Int J Pharm 2023; 645:123366. [PMID: 37669729 DOI: 10.1016/j.ijpharm.2023.123366] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
The pH-responsive drug release approach in combination with three-dimensional (3D) printing for colon-specific oral drug administration can address the limitations of current treatments such as orally administered solid tablets. Such existing treatments fail to effectively deliver the right drug dosage to the colon. In order to achieve targeted drug release profiles, this work aimed at designing and producing 3D printed tablet shells using Eudragit® FS100 and polylactic acid (PLA) where the core was filled with 100 µl of N-acetylglucosamine (GlcNAc)-loaded methyl cellulose (MC) hydrogel. To meet the requirements of such tablets, the effects of polymer blending ratios and MC concentrations on physical, thermal, and material properties of various components of the tablets and most importantly in vitro drug release kinetics were investigated. The tablets with 80/20 wt% of Eudragit® FS100/PLA and the drug-loaded hydrogel with 30 mg/ml GlcNAc and 3% w/v MC showed the most promising results having the best printability, processability, and drug release kinetics besides being non-cytotoxic. Manufacturing of these tablets will be the first milestone in shifting from the conventional "one size fits all" approach to personalized medicine where different dosages and various combinations of drugs can be effectively delivered to the inflammation site.
Collapse
Affiliation(s)
- Maryam Asadi
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran; Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, The Netherlands
| | - Zeinab Salehi
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Mohammad Akrami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Stefan Jockenhövel
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, The Netherlands; Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstrabe 55, 52072 Aachen, Germany
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, The Netherlands; Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstrabe 55, 52072 Aachen, Germany.
| |
Collapse
|
7
|
Gazzaniga A, Moutaharrik S, Filippin I, Foppoli A, Palugan L, Maroni A, Cerea M. Time-Based Formulation Strategies for Colon Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122762. [PMID: 36559256 PMCID: PMC9783935 DOI: 10.3390/pharmaceutics14122762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Despite poor absorption properties, delivery to the colon of bioactive compounds administered by the oral route has become a focus of pharmaceutical research over the last few decades. In particular, the high prevalence of Inflammatory Bowel Disease has driven interest because of the need for improved pharmacological treatments, which may provide high local drug concentrations and low systemic exposure. Colonic release has also been explored to deliver orally biologics having gut stability and permeability issues. For colon delivery, various technologies have been proposed, among which time-dependent systems rely on relatively constant small intestine transit time. Drug delivery platforms exploiting this physiological feature provide a lag time programmed to cover the entire small intestine transit and control the onset of release. Functional polymer coatings or capsule plugs are mainly used for this purpose, working through different mechanisms, such as swelling, dissolution/erosion, rupturing and/or increasing permeability, all activated by aqueous fluids. In addition, enteric coating is generally required to protect time-controlled formulations during their stay in the stomach and rule out the influence of variable gastric emptying. In this review, the rationale and main delivery technologies for oral colon delivery based on the time-dependent strategy are presented and discussed.
Collapse
|
8
|
Electrospun Core–Sheath Nanofibers with Variable Shell Thickness for Modifying Curcumin Release to Achieve a Better Antibacterial Performance. Biomolecules 2022; 12:biom12081057. [PMID: 36008951 PMCID: PMC9406017 DOI: 10.3390/biom12081057] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
The inefficient use of water-insoluble drugs is a major challenge in drug delivery systems. Core–sheath fibers with various shell thicknesses based on cellulose acetate (CA) were prepared by the modified triaxial electrospinning for the controlled and sustained release of the water-insoluble Chinese herbal active ingredient curcumin. The superficial morphology and internal structure of core–sheath fibers were optimized by increasing the flow rate of the middle working fluid. Although the prepared fibers were hydrophobic initially, the core–sheath structure endowed fibers with better water retention property than monolithic fibers. Core–sheath fibers had flatter sustained-release profiles than monolithic fibers, especially for thick shell layers, which had almost zero-order release for almost 60 h. The shell thickness and sustained release of drugs brought about a good antibacterial effect to materials. The control of flow rate during fiber preparation is directly related to the shell thickness of core–sheath fibers, and the shell thickness directly affects the controlled release of drugs. The fiber preparation strategy for the precise control of core–sheath structure in this work has remarkable potential for modifying water-insoluble drug release and improving its antibacterial performance.
Collapse
|