1
|
Moravej R, Azin M, Mohammadjavad S. The importance of acetate, pyruvate, and citrate feeding times in improving xanthan production by Xanthomonas citri. Lett Appl Microbiol 2024; 77:ovae078. [PMID: 39147561 DOI: 10.1093/lambio/ovae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
Xanthan gum is a microbial polysaccharide produced by Xanthomonas and widely used in various industries. To produce xanthan gum, the native Xanthomonas citri-386 was used in a cheese-whey-based culture medium. The culture conditions were investigated in batch experiments based on the response surface methodology to increase xanthan production and viscosity. Three independent variables in this study included feeding times of acetate, pyruvate, and citrate. The maximum xanthan gum production and viscosity within 120 h by X. citri-386 using Box-Behnken design were 25.7 g/l and 65 500 cP, respectively, with a 151% and 394% increase as compared to the control sample. Overall, the findings of this study recommend the use of X. citri-386 in the cheese-whey-based medium as an economical medium with optimal amounts of acetate, pyruvate, and citrate for commercial production of xanthan gum on an industrial scale. The adjustment of the pyruvate and acetate concentrations optimized xanthan gum production in the environment.
Collapse
Affiliation(s)
- Roya Moravej
- Department of biology, Snandaj branch, Islamic Azad University, Sanandaj 6616935391, Iran
| | - Mehrdad Azin
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran 3313193685, Iran
| | - Samaneh Mohammadjavad
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran 3313193685, Iran
| |
Collapse
|
2
|
Qaiser R, Pervaiz F, Noreen S, Hanan H, Shoukat H, Mahmood H, Ashraf MA. Optimizing lornoxicam-loaded poly(lactic-co-glycolic acid) and (polyethylene glycol) nanoparticles for transdermal delivery: ex vivo/ in vivo inflammation evaluation. Nanomedicine (Lond) 2024; 19:1471-1485. [PMID: 38953843 PMCID: PMC11318691 DOI: 10.1080/17435889.2024.2359356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024] Open
Abstract
Aim: This study focused on developing a topical gel incorporating lornoxicam-loaded poly(lactic-co-glycolic acid) and polyethylene glycol (PLGA-PEG) blend nanoparticles to mitigate gastrointestinal (GIT) side effects and enhance therapeutic efficacy. Materials & methods: Synthesized nanoparticles were subjected to in vitro characterization, ex vivo permeation studies, and acute oral toxicity analysis post-incorporation into the gel using a S/O/W double emulsion solvent. Results & conclusion: The nanoparticles displayed a smooth, spherical morphology (170-321 nm) with increased entrapment efficiency (96.2%). LOX exhibited a permeation rate of 70-94% from the nanoparticle-infused gel, demonstrating favorable biocompatibility at the cellular level. The formulated gel, enriched with nanoparticles, holds promising prospects for drug-delivery systems and promising improved therapeutic outcomes for LOX.
Collapse
Affiliation(s)
- Rubina Qaiser
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur63100, Punjab, Pakistan
| | - Fahad Pervaiz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur63100, Punjab, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur63100, Punjab, Pakistan
- Centre for Chemistry & Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020, Austria
| | - Hanasul Hanan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur63100, Punjab, Pakistan
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur63100, Punjab, Pakistan
| | - Hassan Mahmood
- Linguistics & Literature Department, COMSATS University Islamabad, Lahore Campus54000, Punjab, Pakistan
| | | |
Collapse
|
3
|
Bajwa M, Tabassam N, Hameed H, Irfan A, Zaman M, Khan MA, Shazly GA, Mehboob T, Riaz T, Jardan YAB. Thermo-Responsive Sol-Gel-Based Nano-Carriers Containing Terbinafine HCl: Formulation, In Vitro and Ex Vivo Characterization, and Antifungal Activity. Gels 2023; 9:830. [PMID: 37888403 PMCID: PMC10606830 DOI: 10.3390/gels9100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
The current research aims to create a sol-gel-based nanocarrier containing terbinafine formulated for transdermal delivery of the drug into the skin. Sol-gel-based nanocarriers were prepared via the cold method using poloxamer-188, poloxamer-407, and distilled water. The prepared formulation was examined for pH, gelation temperature, Fourier transform infrared spectrophotometer (FTIR) analysis, thermal stability analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), particle size analysis, zeta potential, and anti-microbial activity. The in-vitro drug release study of F1 was found to be 94%, which showed greater drug release as compared to F2 and F3. The pH of the formulation was found to be within the range applicable to the skin. The gelation temperature was detected at 28 °C. The SEM images of formulations have spotted various particles well-segregated from each other. Analysis of formulations showed a mean globule size diameter of 428 nm, zeta potential values of 0.04 mV, refractive index (1.329), and viscosity (5.94 cP). FTIR analysis confirmed various functional groups' presence in the prepared formulation. Thermal analysis has confirmed the stability of the drug within the prepared formulation. The growth of inhibition was found to be 79.2% in 60 min, which revealed that the prepared formulation has shown good permeation from the membrane. Hence, the sol-gel-based nanocarrier formulation of terbinafine was successfully developed and evaluated.
Collapse
Affiliation(s)
- Maryam Bajwa
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Naila Tabassam
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
- Institute of Clinical and Experimental Pharmacology and Toxicology, University of Lubeck, 23566 Lubeck, Germany
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tooba Mehboob
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Tehseen Riaz
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Polymeric Nanoparticles as Tunable Nanocarriers for Targeted Delivery of Drugs to Skin Tissues for Treatment of Topical Skin Diseases. Pharmaceutics 2023; 15:pharmaceutics15020657. [PMID: 36839979 PMCID: PMC9964857 DOI: 10.3390/pharmaceutics15020657] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The topical route is the most appropriate route for the targeted delivery of drugs to skin tissues for the treatment of local skin diseases; however, the stratum corneum (SC), the foremost layer of the skin, acts as a major barrier. Numerous passive and active drug delivery techniques have been exploited to overcome this barrier; however, these modalities are associated with several detrimental effects which restrict their clinical applicability. Alternatively, nanotechnology-aided interventions have been extensively investigated for the topical administration of a wide range of therapeutics. In this review, we have mainly focused on the biopharmaceutical significance of polymeric nanoparticles (PNPs) (made from natural polymers) for the treatment of various topical skin diseases such as psoriasis, atopic dermatitis (AD), skin infection, skin cancer, acute-to-chronic wounds, and acne. The encapsulation of drug(s) into the inner core or adsorption onto the shell of PNPs has shown a marked improvement in their physicochemical properties, avoiding premature degradation and controlling the release kinetics, permeation through the SC, and retention in the skin layers. Furthermore, functionalization techniques such as PEGylation, conjugation with targeting ligand, and pH/thermo-responsiveness have shown further success in optimizing the therapeutic efficacy of PNPs for the treatment of skin diseases. Despite enormous progress in the development of PNPs, their clinical translation is still lacking, which could be a potential future perspective for researchers working in this field.
Collapse
|
5
|
Ahmad HS, Ateeb M, Noreen S, Farooq MI, Baig MMFA, Nazar MS, Akhtar MF, Ahmad K, Ayub AR, Shoukat H, Hadi F, Madni A. Biomimetic synthesis and characterization of silver nanoparticles from Dipterygium glaucum extract and its anti-cancerous activities. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
6
|
Morteza-Semnani K, Saeedi M, Akbari J, Hedayati S, Hashemi SMH, Rahimnia SM, Babaei A, Ghazanfari M, Haghani I, Hedayati MT. Green formulation, characterization, antifungal and biological safety evaluation of terbinafine HCl niosomes and niosomal gels manufactured by eco-friendly green method. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2325-2352. [PMID: 35848460 DOI: 10.1080/09205063.2022.2103626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Terbinafine (TER) is a promising candidate medication for the topical treatment of fungal infections. However, its solubility in water and skin permeability are limited. To overcome these limitations, a Terbinafine niosome and niosomal gel was developed. The impact of cholesterol:surfactants on terbinafine incorporated niosome (terbinasome) preparations was examined. Differential scanning calorimetry (DSC), photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy were used to assess the morphological features of terbinasome and the physicochemical characteristics of TER in terbinasome. The obtained results has shown that Chol enhanced the diameter of the terbinasome from 123.20 ± 2.86 to 701.93 ± 17.72 nm. The highest encapsulation of terbinafine was estimated to be around 66% due to the cholesterol:surfactants ratio in the terbinasome was 1:3 and 1:6. Additional examination has revealed that changes in the cholesterol:surfactants ratio can result in a change in the PDI value of between 0.421 ± 0.004 and 0.712 ± 0.011. The terbinasome gel was prepared and tested for pharmaceutical testing, including pH, viscosity, spreadability, and stability. The percentage of TER dissolution from terbinasome were determined more than 80% and showed quickest drug release. In a cutaneous permeability examination, the quantity of TER in the cutaneous layers and the receiver compartment were higher for the terbinasome gel than for the TER simple gel. The terbinasome's cell viability was around 90% (HFF cell line) and MTT experiment demonstrated that the terbinasome was not cytotoxic. The MIC of the terbinasome was lower than pure drug against Aspergillus, Fusarium, and Trichophyton. The terbinasomal gels were non-irritant (score < 2) in the cutaneous irritation examination performed on Wistar rats. The research suggests that the optimized terbinasome may be used as a nano-vesicle for TER drug administration, hence opening up new possibilities for the treatment of cutaneous infections.
Collapse
Affiliation(s)
- Katayoun Morteza-Semnani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Pharmaceutical Sciences Research Centre, Haemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shakiba Hedayati
- Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Mohammad Hassan Hashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Mobin Rahimnia
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mona Ghazanfari
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Taghi Hedayati
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
7
|
Itraconazole and Difluorinated-Curcumin Containing Chitosan Nanoparticle Loaded Hydrogel for Amelioration of Onychomycosis. Biomimetics (Basel) 2022; 7:biomimetics7040206. [PMID: 36412734 PMCID: PMC9680304 DOI: 10.3390/biomimetics7040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Onychomycosis is a nail infection caused by a fungus, Trichophyton mentagrophytes, that is responsible for major nail infections. The best method suited for treating such infections generally includes a topical remedy. However, conventional oral or topical formulations are associated with various limitations. Therefore, a more efficient and compatible formulation is developed in this study. The primary objective of the current study is to formulate and evaluate chitosan nanoparticle-based hydrogel for ameliorating onychomycosis. The sole purpose of this research was to increase the permeation of the lipophilic drug itraconazole and difluorinated curcumin, and its synergistic antifungal activity was also evaluated for the first time. Both in vitro and ex vivo drug release evaluations confirmed the sustained release of both drugs from the hydrogel, which is a prerequisite for treating onychomycosis. The results overall highlighted the promising activity of a synergistic approach that could be implemented for the treatment of onychomycosis. The hydrogel-based formulation serves as an effective method of delivery of drugs across the layers of the skin, resulting from its hydrating characteristics.
Collapse
|
8
|
Chibh S, Suyal S, Aggarwal N, Bachhawat AK, Panda JJ. Cysteine-phenylalanine-derived self-assembled nanoparticles as glutathione-responsive drug-delivery systems in yeast. J Mater Chem B 2022; 10:8733-8743. [PMID: 36250485 DOI: 10.1039/d2tb01362b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite the availability of different antifungal drugs in the market, their overall usefulness remains questionable due to the relatively high toxic profiles exerted by them in many cases. In addition, the emergence of drug resistance against these antifungal agents is a matter of concern. Thus, it becomes imperative to explore innovative drug-delivery vehicles to deliver these antifungal drugs for enhanced efficacy, mitigating unwanted side effects and tackling the surge in antifungal resistance. Considering this fact, in this piece of work, we have synthesized stimulus (glutathione)-responsive dipeptide-based self-assembled nanoparticles (NPs) to explore and establish the redox-responsive antifungal drug delivery of a relatively hydrophobic drug, terbinafine (Terb), in Saccharomyces cerevisiae (S. cerevisiae). The NPs were prepared using a relatively aqueous environment as opposed to other Terb formulations that are administered in mostly non-polar solvents and with limited biocompatibility. The NPs demonstrated an encapsulation efficiency of around 99% for Terb and resulted in complete inhibition of yeast-cell growth at a dose of 200 μg mL-1 of the drug-loaded formulation. Thus, these biocompatible and aqueous dipeptide-based redox-responsive NPs can offer a promising drug-delivery platform to provide enhanced antifungal drug delivery with heightened efficacy and biocompatibility.
Collapse
Affiliation(s)
- Sonika Chibh
- Institute of Nano Science and Technology, Mohali, Punjab, 140306, India.
| | - Shradha Suyal
- Indian Institute of Science Education and Research Mohali, Punjab, 140306, India
| | - Nidhi Aggarwal
- Institute of Nano Science and Technology, Mohali, Punjab, 140306, India.
| | | | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab, 140306, India.
| |
Collapse
|
9
|
Natural polysaccharide-based biodegradable polymeric platforms for transdermal drug delivery system: a critical analysis. Drug Deliv Transl Res 2022; 12:2649-2666. [PMID: 35499715 DOI: 10.1007/s13346-022-01152-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Natural biodegradable polymers generally include polysaccharides (starch, alginate, chitin/chitosan, hyaluronic acid derivatives, etc.) and proteins (collagen, gelatin, fibrin, etc.). In transdermal drug delivery systems (TDDS), these polymers play a vital role in controlling the device's drug release. It is possible that natural polymers can be used for TDDS to attain predetermined drug delivery rates due to their physicochemical properties. These polymers can be employed to market products and scale production because they are readily available and inexpensive. As a result of these polymers, new pharmaceutical delivery systems can be developed that is both regulated and targeted. The focus of this article is the application of a biodegradable polymeric platform based on natural polymers for TDDS. Due to their biocompatibility and biodegradability, natural biodegradable polymers are frequently used in biomedical applications. Additionally, these natural biodegradable polymers are being studied for their characteristics and behaviors.
Collapse
|
10
|
Ullah KH, Rasheed F, Naz I, Ul Haq N, Fatima H, Kanwal N, Ur-Rehman T. Chitosan Nanoparticles Loaded Poloxamer 407 Gel for Transungual Delivery of Terbinafine HCl. Pharmaceutics 2022; 14:2353. [PMID: 36365171 PMCID: PMC9698022 DOI: 10.3390/pharmaceutics14112353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2023] Open
Abstract
The current study aimed to develop chitosan nanoparticles (CSNP) loaded poloxamer 407 (P407) gel formulation for transungual delivery of terbinafine HCl (TBN). TBN-CSNP were prepared by nanoprecipitation method and optimized by face-centered central composite design (FCCCD). Optimized TBN-CSNP formulation exhibited a spherical shape with hydrodynamic diameter; zeta potential and entrapment efficiency (EE) of 229 ± 5 nm; 37 ± 1.5 mV; and 75 ± 2% respectively. The solid state of TBN and its compatibility with formulation ingredients were confirmed through XRD and FTIR analysis respectively. TBN-CSNP loaded P407 gel exhibited pseudoplastic rheological behavior having a spreadability of 11 ± 2 g·cm/s. The washability study showed that 40 ± 2% of the gel was eroded after washing 12 times. Drug release from TBN-CSNP- and TBN-CSNP-loaded gel was 84 ± 5% and 57 ± 3%, respectively. The cumulative quantity of TBN permeated from TBN-CSNP-loaded P407 gel and TBN-loaded P407 gel was 25 ± 8 and 27 ± 4 µg/cm2, respectively. The nail uptake study showed that 3.6 ± 0.7 and 2.1 ± 0.3 µg of rhodamine was uptaken by the nail following 2 h topical application of TBN-CSNP loaded P407 gel and TBN loaded P407 gel, respectively. Hence, the developed CSNP-based P407 gel formulation can be a potential carrier for transungual delivery of TBN to topically treat onychomycosis.
Collapse
Affiliation(s)
| | - Faisal Rasheed
- Patient Diagnostic Lab, Isotope Application Division (IAD), Pakistan Institute of Nuclear Science and Technology (PINSTECH), Nilore, Islamabad 45650, Pakistan
| | - Iffat Naz
- Department of Biology, Science Unit, Deanship of Educational Services, Qassim University, Buraidah 51452, Saudi Arabia
| | - Naveed Ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Humaira Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Nosheen Kanwal
- Department of Biochemistry, Science Unit, Deanship of Educational Services, Qassim University, Buraidah 51452, Saudi Arabia
| | - Tofeeq Ur-Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
11
|
Sharma G, Kumar A, Ghfar AA, García-Peñas A, Naushad M, Stadler FJ. Fabrication and Characterization of Xanthan Gum-cl-poly(acrylamide-co-alginic acid) Hydrogel for Adsorption of Cadmium Ions from Aqueous Medium. Gels 2021; 8:23. [PMID: 35049556 PMCID: PMC8775010 DOI: 10.3390/gels8010023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
The present research demonstrates the facile fabrication of xanthan gum-cl-poly(acrylamide-co-alginic acid) (XG-cl-poly(AAm-co-AA)) hydrogel by employing microwave-assisted copolymerization. Simultaneous copolymerization of acrylamide (AAm) and alginic acid (AA) onto xanthan gum (XG) was carried out. Different samples were fabricated by changing the concentrations of AAm and AA. A sample with maximum swelling percentage was chosen for adsorption experiments. The structural and functional characteristics of synthesized hydrogel were elucidated using diverse characterization tools. Adsorption performance of XG-cl-poly(AAm-co-AA) hydrogel was investigated for the removal of noxious cadmium (Cd(II)) ions using batch adsorption from the aqueous system, various reaction parameters optimized include pH, contact time, temperature, and concentration of Cd(II) ions and temperature. The maximum adsorption was achieved at optimal pH 7, contact time 180 min, temperature 35 °C and cadmium ion centration of 10 mg·L-1. The XG-cl-poly(AAm-co-AA) hydrogel unveiled a very high adsorption potential, and its adsorption capacities considered based on the Langmuir isotherm for Cd(II) ions was 125 mg·g-1 at 35 °C. The Cd(II) ions adsorption data fitted nicely to the Freundlich isotherm and pseudo-first-order model. The reusability investigation demonstrated that hydrogel retained its adsorption capacity even after several uses without significant loss.
Collapse
Affiliation(s)
- Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China; (A.K.); (F.J.S.)
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
- School of Science and Technology, Glocal University, Saharanpur 247001, Uttar Pradesh, India
| | - Amit Kumar
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China; (A.K.); (F.J.S.)
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
| | - Ayman A. Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Alberto García-Peñas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain;
| | - Mu. Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Florian J. Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China; (A.K.); (F.J.S.)
| |
Collapse
|