1
|
Zhu B, Ding Z, Rong X, Li S, Mei X. Silybin Cocrystals with Improved Solubility and Bioavailability. Pharmaceuticals (Basel) 2025; 18:90. [PMID: 39861153 PMCID: PMC11768837 DOI: 10.3390/ph18010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Backgroud/Objectives: Silymarin, an extract from milk thistle, is widely recognized for its therapeutic potential in treating liver disorders. However, its clinical utility is limited by the poor solubility and low bioavailability of its key active ingredient, Silybin. In this study, we sought to address this issue through the development of a novel cocrystal of Silyin. Methods: Silybin-L-proline cocrystal was synthesized and the physicochemical properties of the cocrystal were characterized by PXRD, TGA, DSC, and FTIR. Dissolution tests were conducted in various pH solutions, and the impact of precipitation inhibitors was evaluated. Furthermore, pharmacokinetic study in rats were performed to assess the bioavailability. Results: The dissolution studies demonstrated that the cocrystal has a significant improvement in dissolution performance, particularly in acidic environments. Furthermore, the use of precipitation inhibitors, such as PVP, prolonged the supersaturation period for adequate absorption. Pharmacokinetic studies in rats revealed that the cocrystal exhibited a 16-fold increase in bioavailability compared to the raw Silybin extract, outperforming the commercial Silybin-phosphatidylcholine complex. Conclusions: The Silybin-L-proline cocrystal significantly enhances dissolution and bioavailability, indicating its potential to improve the therapeutic efficacy of Silybin in clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Xuefeng Mei
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (B.Z.); (X.R.)
| |
Collapse
|
2
|
Yamamoto H, Sugano K. Drug Crystal Precipitation in Biorelevant Bicarbonate Buffer: A Well-Controlled Comparative Study with Phosphate Buffer. Mol Pharm 2024; 21:2854-2864. [PMID: 38718215 DOI: 10.1021/acs.molpharmaceut.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The purpose of the present study was to clarify whether the precipitation profile of a drug in bicarbonate buffer (BCB) may differ from that in phosphate buffer (PPB) by a well-controlled comparative study. The precipitation profiles of structurally diverse poorly soluble drugs in BCB and PPB were evaluated by a pH-shift precipitation test or a solvent-shift precipitation test (seven weak acid drugs (pKa: 4.2 to 7.5), six weak base drugs (pKa: 4.8 to 8.4), one unionizable drug, and one zwitterionic drug). To focus on crystal precipitation processes, each ionizable drug was first completely dissolved in an HCl (pH 3.0) or NaOH (pH 11.0) aqueous solution (450 mL, 50 rpm, 37 °C). A 10-fold concentrated buffer solution (50 mL) was then added to shift the pH value to 6.5 to initiate precipitation (final volume: 500 mL, buffer capacity (β): 4.4 mM/ΔpH (BCB: 10 mM or PPB: 8 mM), ionic strength (I): 0.14 M (adjusted by NaCl)). The pH, β, and I values were set to be relevant to the physiology of the small intestine. For an unionizable drug, a solvent-shift method was used (1/100 dilution). To maintain the pH value of BCB, a floating lid was used to avoid the loss of CO2. The floating lid was applied also to PPB to precisely align the experimental conditions between BCB and PPB. The solid form of the precipitants was identified by powder X-ray diffraction and differential scanning microscopy. The precipitation of weak acids (pKa ≤ 5.1) and weak bases (pKa ≥ 7.3) was found to be slower in BCB than in PPB. In contrast, the precipitation profiles in BCB and PPB were similar for less ionizable or nonionizable drugs at pH 6.5. The final pH values of the bulk phase were pH 6.5 ± 0.1 after the precipitation tests in all cases. All precipitates were in their respective free forms. The precipitation of ionizable weak acids and bases was slower in BCB than in PPB. The surface pH of precipitating particles may have differed between BCB and PPB due to the slow hydration process of CO2 specific to BCB. Since BCB is a physiological buffer in the small intestine, it should be considered as an option for precipitation studies of ionizable weak acids and bases.
Collapse
Affiliation(s)
- Hibiki Yamamoto
- Molecular Pharmaceutics Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
3
|
Mendis NP, Lakerveld R. An In Vitro Model for Cocrystal Dissolution with Simultaneous Surface and Bulk Precipitation. Mol Pharm 2023; 20:5486-5499. [PMID: 37882573 DOI: 10.1021/acs.molpharmaceut.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Cocrystals can be promising means of overcoming the poor aqueous solubility of many drugs. However, precipitation of the stable drug at the cocrystal surface or in the bulk medium is often provoked during cocrystal dissolution due to high drug supersaturation, which prevents sustaining high drug concentrations for enhanced bioavailability. There is a need for predictive in vitro models that can accurately describe this cocrystal dissolution-supersaturation-precipitation (DSP) process to aid drug development and formulation design. Consideration of surface precipitation is often essential for such models given the strong impact of surface precipitation on the drug concentration during cocrystal dissolution. However, DSP models that can explicitly account for the effect of surface precipitation are currently lacking. This work presents a population balance-based model to describe in vitro cocrystal DSP behavior, which accounts for cocrystal dissolution, surface precipitation, and bulk precipitation. Dissolution experiments with carbamazepine-succinic acid cocrystals are conducted for model development and validation. The developed model captures all of the principal experimental trends and predicts the dose-dependent DSP behavior outside the regression data set with reasonable accuracy. The results show that surface precipitation is an essential component of the model. Finally, the new model is integrated with numerical optimization to illustrate how it can be used to identify an optimal dose, particle size, and amount of predissolved coformer.
Collapse
Affiliation(s)
- Nethrue Pramuditha Mendis
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Richard Lakerveld
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
4
|
Shi K, Li M. Optimisation of Pharmaceutical Cocrystal Dissolution Performance through a Synergistic Precipitation Inhibition. Pharm Res 2023; 40:2051-2069. [PMID: 37188904 PMCID: PMC10447287 DOI: 10.1007/s11095-023-03532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVES Polymeric excipients play an important role in a cocrystal formulation to act as precipitation inhibitors to maximize the potential. Otherwise, a stable form of the parent drug will be recrystallized on the dissolving cocrystal surface and/or in the bulk solution during the cocrystal dissolution process, negating the solubility advantage. The objectives of this work were to investigate the potential of using combined polymers to maximise the dissolution performance of surface precipitation pharmaceutical cocrystals. METHODS The dissolution performance of a highly soluble flufenamic acid and nicotinamide (FFA-NIC) cocrystal has been systematically studied with predissolved or powder mixed with a single polymer, including a surface precipitation inhibitor [i.e., copolymer of vinylpyrrolidone (60%) /vinyl acetate (40%) (PVP-VA)] and two bulk precipitation inhibitors [i.e., polyethylene glycol (PEG) and Soluplus (SLP)], or binary polymers combinations. RESULTS A single polymer of PVP-VA prevented the FFA surface precipitation for an enhanced dissolution performance of FFA-NIC cocrystal. Unfortunately, it cannot sustain the supersaturated FFA concentration in the bulk solution. A combination of two polymers of PVP-VA and SLP has shown a synergistic inhibition effect to enhance the dissolution advantage of FFA-NIC cocrystal. CONCLUSIONS The dissolution of a cocrystal with surface precipitation of the parent drug can be described as: i) the cocrystal surface contacting the dissolution medium; ii) the cocrystal surface dissolving; iii) the parent drug precipitation on the dissolving surface; and iv) the parent drug particles redissolving. A combination of two types of polymers can be used to maximise the cocrystal performance in solution.
Collapse
Affiliation(s)
- Kejing Shi
- School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Mingzhong Li
- School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK.
| |
Collapse
|
5
|
Uekusa T, Sugano K. Prediction of Liquid-Liquid Phase Separation at the Dissolving Drug Salt Particle Surface. Mol Pharm 2023. [PMID: 37183369 DOI: 10.1021/acs.molpharmaceut.3c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
During the dissolution of drug salt particles, liquid-liquid phase separation (LLPS) of a free form can occur within the unstirred water layer (UWL) of the particles (UWL-LLPS). Theoretically, UWL-LLPS occurs when the free form concentration at the salt particle surface (C0) exceeds the intrinsic LLPS concentration (S0LLPS) of the free form. In the present study, we attempted to predict UWL-LLPS based on the intrinsic physicochemical properties of drugs. Cyproheptadine hydrochloride (CPH-HCl), diclofenac sodium (DCF-Na), papaverine hydrochloride (PAP-HCl), and propafenone hydrochloride (PRF-HCl) were selected as model drug salts. The pH0 and C0 values at pHs 4.0-9.5 (citric acid, phosphoric acid, and boric acid, buffer capacity = ca. 4 mM/ΔpH) were calculated using the pKa, solubility product (Ksp), and diffusion coefficient (D) of a drug. S0LLPS was measured using the pH-shift method. UWL-LLPS was predicted to occur when C0 ≥ S0LLPS. The prediction result was then compared with UWL-LLPS observed at each pH by polarized light microscopy (PLM). The pH-LLPS concentration (SpHLLPS) profile of each drug was also measured. UWL-LLPS was approximately correctly predicted for CPH-HCl, DCF-Na, and PRF-HCl. However, UWL-LLPS was not observable when C0 was close to S0LLPS. Furthermore, UWL-LLPS was not accurately predicted in the case of PAP-HCl. The pH-SpHLLPS profile of PAP did not follow the Henderson-Hasselbalch equation, probably because of the formation of cationic aggregates. In conclusion, UWL-LLPS was approximately predictable for drug salts using their intrinsic physicochemical properties (Ksp, pKa, D, and S0LLPS), except for PAP-HCl.
Collapse
Affiliation(s)
- Taiga Uekusa
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
6
|
Sakamoto A, Sugano K. Dissolution Profiles of Poorly Soluble Drug Salts in Bicarbonate Buffer. Pharm Res 2023; 40:989-998. [PMID: 37024757 DOI: 10.1007/s11095-023-03508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
PURPOSE The purpose of the present study was to investigate the effect of buffer species on the dissolution profiles of poorly soluble drug salts, focusing on bicarbonate buffer (BCB). METHODS Pioglitazone HCl (PIO HCl) and dantrolene sodium (DNT Na) were used as model drugs. Non-sink dissolution tests were performed using phosphate buffer (PB) and BCB (pH 6.5, buffer capacity: 4.4 mM/pH, ionic strength: 0.14 M, with/ without bile micelles). The pH value of BCB was maintained using a floating lid that avoided the loss of CO2. The particles collected at the early stage of dissolution (< 5 min) were analyzed by powder X-ray diffraction, polarized light microscopy, and scanning electron microscopy. A bulk-phase pH shift precipitation test was also performed. RESULTS The dissolution of PIO HCl was slower in BCB than in PB, whereas that of DNT Na was faster in BCB than in PB. The same trend was observed in the presence of bile micelles. Free-form precipitation on the surface of salt particles was observed early in their dissolution in both BCB and PB. However, the surface textures in BCB and PB were different. The bulk-phase precipitation of PIO was little affected by buffer species, whereas that of DNT was affected, but oppositely to the dissolution profile. CONCLUSION The dissolution profiles of PIO HCl and DNT Na in BCB were markedly different from those in PB. Free-form precipitation on the particle surface, rather than in the bulk phase, was affected by buffer species in the dissolution test.
Collapse
Affiliation(s)
- Aoi Sakamoto
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
7
|
Dissolution Profiles of Carbamazepine Cocrystals with Cis-Trans Isomeric Coformers. Pharm Res 2023; 40:579-591. [PMID: 35194718 DOI: 10.1007/s11095-022-03209-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE The purpose of the present study was to investigate the dissolution profiles of cocrystals with cis-trans isomeric coformers. Previously, the carbamazepine (CBZ) cocrystals with even-carbon dicarboxylic acids showed higher supersaturation than those with odd-carbon ones, attributed to particle surface solution-mediated phase transformation (PS-SMPT) to CBZ dihydrate (CBZ DH). However, it has been unknown whether this odd-even pattern holds for cis-trans isomeric coformers. METHOD CBZ cocrystals with maleic acid (MLE) and fumaric acid (FUM) (CBZ-FUM anhydrate (CBZ-FUM AH) and monohydrate (CBZ-FUM H2O)) were employed as model cocrystals. Hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone, and polyethylene glycol 6000 (PEG) were used as precipitation inhibitors. Dissolution tests were performed under a non-sink condition. Residual particles were analyzed by powder X-ray diffraction, differential scanning calorimetry, polarized light microscope, and scanning electron microscope. RESULTS All cocrystals showed little supersaturation in the absence of a polymer. In 0.1% HPMC, CBZ-FUM AH showed significant supersaturation, whereas CBZ-MLE and CBZ-FUM H2O did not for the first two hours. HPMC reduced the initial dissolution rate of CBZ-MLE and CBZ-FUM H2O while inducing the highest supersaturation among the polymers after 96 h. The particle surface changed from a smooth plane to a striped pattern, but little or no CBZ DH was detected. CONCLUSION The cocrystals with cis-trans isomeric coformers showed different dissolution profiles. HPMC increased the dissolution rate of CBZ-FUM AH by inhibiting PS-SMPT but reduced the dissolution rate of CBZ-MLE and CBZ-FUM H2O without inducing PS-SMPT. The striped pattern was suggested to be due to surface etching rather than PS-SMPT.
Collapse
|