1
|
Ita K, Prinze J. Machine learning for skin permeability prediction: random forest and XG boost regression. J Drug Target 2024; 32:57-65. [PMID: 37962433 DOI: 10.1080/1061186x.2023.2284096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Background: Machine learning algorithms that can quickly and easily estimate skin permeability (Kp) are increasingly being used in drug delivery research. The linear free energy relationship (LFER) developed by Abraham is a practical technique for predicting Kp. The permeability coefficients and Abraham solute descriptor values for 175 organic compounds have been documented in the scientific literature.Purpose: The purpose of this project was to use a publicly available dataset to make skin permeability predictions using the random forest and XBoost regression techniques.Methods: We employed Pandas-based methods in JupyterLab to predict permeability coefficient (Kp) from solute descriptors (excess molar refraction [E], combined dipolarity/polarizability [S], overall solute hydrogen bond acidity and basicity [A and B], and the McGowan's characteristic molecular volume [V]).Results: The random forest and XG Boost regression models established statistically significant association between the descriptors and the skin permeability coefficient.
Collapse
Affiliation(s)
- Kevin Ita
- College of Pharmacy, Touro University, Vallejo, CA, USA
| | - Joyce Prinze
- College of Pharmacy, Touro University, Vallejo, CA, USA
| |
Collapse
|
2
|
Raut S, Azheruddin M, Kumar R, Singh S, Giram PS, Datta D. Lecithin Organogel: A Promising Carrier for the Treatment of Skin Diseases. ACS OMEGA 2024; 9:9865-9885. [PMID: 38463343 PMCID: PMC10918684 DOI: 10.1021/acsomega.3c05563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 03/12/2024]
Abstract
Skin is the largest organ of the human body, as it protects the body from the external environment. Nowadays, skin diseases and skin problems are more common, and millions of people are affected daily. Skin diseases are due to numerous infectious pathogens or inflammatory conditions. The increasing demand for theoretical research and practical applications has led to the rising prominence of gel as a semisolid material. To this end, organogels has been widely explored due to their unique composition, which includes organic solvents and mineral or vegetable oils, among others. Organogels can be described as semisolid systems wherein an organic liquid phase is confined within a three-dimensional framework consisting of self-assembled, cross-linked, or entangled gelator fibers. These gels have the ability to undergo significant expansion and retain substantial amounts of the liquid phase, reaching up to 99% swelling capacity. Furthermore, they respond to a range of physical and chemical stimuli, including temperature, light, pH, and mechanical deformation. Notably, due to their distinctive properties, they have aroused significant interest in a variety of practical applications. Organogels favor the significant encapsulation and enhanced permeation of hydrophobic molecules when compared with hydrogels. Accordingly, organogels are characterized into lecithin organogels, pluronic lecithin organogels, sorbitan monostearate-based organogels, and eudragit organogels, among others, based on the nature of their network and the solvent system. Lecithin organogels contain lecithin (natural and safe as a living cell component) as an organogelator. It acts as a good penetration enhancer. In this review, first we have summarized the fundamental concepts related to the elemental structure of organogels, including their various forms, distinctive features, methods of manufacture, and diverse applications. Nonetheless, this review also sheds light on the delivery of therapeutic molecules entrapped in the lecithin organogel system into deep tissue for the management of skin diseases and provides a synopsis of their clinical applications.
Collapse
Affiliation(s)
- Sushil Raut
- Department
of Pharmaceutics, Dr. DY Patil Institute
of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Mohammed Azheruddin
- Department
of Pharmaceutics, Dr. DY Patil Institute
of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Rajeev Kumar
- Lloyd
Institute of Management and Technology, Plot No. 11, Knowledge Park-II, Greater Noida, Uttar Pradesh 201306, India
| | - Shivani Singh
- Lloyd
Institute of Management and Technology, Plot No. 11, Knowledge Park-II, Greater Noida, Uttar Pradesh 201306, India
| | - Prabhanjan S. Giram
- Department
of Pharmaceutics, Dr. DY Patil Institute
of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
3
|
Lima AL, Gross IP, de Sá-Barreto LL, Gratieri T, Gelfuso GM, Cunha-Filho M. Extrusion-based systems for topical and transdermal drug delivery. Expert Opin Drug Deliv 2023; 20:979-992. [PMID: 37522812 DOI: 10.1080/17425247.2023.2241362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
INTRODUCTION Although the administration of drugs on the skin is a safe and noninvasive therapeutic alternative, producing formulations capable of disrupting the cutaneous barriers is still a challenge. In this scenario, extrusion-based techniques have emerged as disruptive technologies to ensure unique drug-excipient interactions that facilitate drug skin diffusion for systemic or local effect and even mean the key to obtain viable industrial products. AREAS COVERED This article presents a comprehensive overview of extrusion-based techniques in developing pharmaceutical dosage forms for topical or transdermal drug delivery. First, the theoretical basis of how extrusion-based techniques can optimize the permeation of drugs through the skin is examined. Then, the current state-of-the-art of drug products developed by extrusion-based techniques, specifically by hot-melt extrusion (HME) and fused deposition modeling (FDM) 3D printing, are discussed and contrasted with the current pharmaceutical processes. EXPERT OPINION A wide variety of pharmaceutical products can be obtained using HME and FDM 3D printing, including new dosage forms designed for a perfect anatomical fit. Despite the limitations of pharmaceutical products produced with HME and FDM 3D printing regarding thermal stability and available excipients, the advantages in industrial adaptability and improved bioavailability allied with patient-match devices certainly deserve full attention and investment.
Collapse
Affiliation(s)
- Ana Luiza Lima
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Idejan P Gross
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Lívia Lira de Sá-Barreto
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Guilherme Martins Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| |
Collapse
|