1
|
Hindawy RF, Manawy SM, Nafea OE, Abdelhameed AA, Hendawi FF. Moringa oleifera leaves ethanolic extract counteracts cortical neurodegeneration induced by aluminum chloride in rats. Toxicol Res (Camb) 2024; 13:tfae028. [PMID: 38455639 PMCID: PMC10917235 DOI: 10.1093/toxres/tfae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
Background Aluminum, a well-recognized neurotoxin, is implicated in various neurodegenerative disorders. Moringa oleifera (M. oleifera), known as a miracle tree, is utilized as a functional food and nutritional supplement. This study investigates the potential preventive effects of M. oleifera extract on aluminum chloride (AlCl3)-induced cortical neurodegeneration in rats. Materials and methods Therefore, 24 adult male Wistar rats were randomly divided into four distinct groups: negative control, M. oleifera extract (MOE), AlCl3, and AlCl3 + MOE. Treatments were administered orally for 28 consecutive days. Cognitive performance, brain oxidative/nitrosative stress, neuroinflammation, apoptotic-cell death, and associated histopathological alterations were assessed. Results Our results showed that MOE improved spatial learning and memory, enhanced antioxidant superoxide dismutase enzyme activity, antagonized nitrosative stress, reduced inflammatory cytokines (tumor necrosis factor-alpha and interleukin-6), decreased caspase-3, increased Bcl-2, and facilitated repair of cortical and hippocampal structures. Conclusions We concluded that MOE exhibits protective effects against cortical neurodegeneration, making it a promising supplement to counteract aluminum-induced neurotoxic effects.
Collapse
Affiliation(s)
- Rabab Fawzy Hindawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| | - Samia M Manawy
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| | - Ola Elsayed Nafea
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig Rd inside Zagazig University, Shaibet an Nakareyah, Al-Sharqia Governorate, Zagazig 44519, Egypt
| | - Abeer A Abdelhameed
- Department of Pharmacology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| | - Fatma Fawzi Hendawi
- Department of Pharmacology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| |
Collapse
|
2
|
Vishwas S, Bashir B, Birla D, Khandale N, Chaitanya MVNL, Chellappan DK, Gupta G, Negi P, Dua K, Singh SK. Neuroprotective Role of Phytoconstituents-based Nanoemulsion for the Treatment of Alzheimer's Disease. Curr Top Med Chem 2024; 24:1683-1698. [PMID: 38676489 DOI: 10.2174/0115680266296001240327090111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 04/29/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent form of neurodegenerative disorder (ND), affecting more than 44 million individuals globally as of 2023. It is characterized by cognitive dysfunction and an inability to perform daily activities. The progression of AD is associated with the accumulation of amyloid beta (Aβ), the formation of neurofibrillary tangles (NFT), increased oxidative stress, neuroinflammation, mitochondrial dysfunction, and endoplasmic reticulum stress. Presently, various phytomedicines and their bioactive compounds have been identified for their neuroprotective effects in reducing oxidative stress, alleviating neuroinflammation, and mitigating the accumulation of Aβ and acetylcholinesterase enzymes in the hippocampus and cerebral cortex regions of the brain. However, despite demonstrating promising anti-Alzheimer's effects, the clinical utilization of phytoconstituents remains limited in scope. The key factor contributing to this limitation is the challenges inherent in traditional drug delivery systems, which impede their effectiveness and efficiency. These difficulties encompass insufficient drug targeting, restricted drug solubility and stability, brief duration of action, and a lack of control over drug release. Consequently, these constraints result in diminished bioavailability and insufficient permeability across the blood-brain barrier (BBB). In response to these challenges, novel drug delivery systems (NDDS) founded on nanoformulations have emerged as a hopeful strategy to augment the bioavailability and BBB permeability of bioactive compounds with poor solubility. Among these systems, nanoemulsion (NE) have been extensively investigated for their potential in targeting AD. NE offers several advantages, such as ease of preparation, high drug loading, and high stability. Due to their nanosize droplets, NE also improves gut and BBB permeability leading to enhanced permeability of the drug in systemic circulation and the brain. Various studies have reported the testing of NE-based phytoconstituents and their bioactives in different animal species, including transgenic, Wistar, and Sprague-Dawley (SD) rats, as well as mice. However, transgenic mice are commonly employed in AD research to analyze the effects of Aβ. In this review, various aspects such as the neuroprotective role of various phytoconstituents, the challenges associated with conventional drug delivery, and the need for NDDS, particularly NE, are discussed. Various studies involving phytoconstituent-based NE for the treatment of AD are also discussed.
Collapse
Affiliation(s)
- Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Devendra Birla
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nikhil Khandale
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | | | | | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Jaipur, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan (Bajhol), Solan, H.P., 173212, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|