1
|
Xu Z, Miao L, Meng X, Sui J, Chen M, Zheng Z, Huo S, Liu S, Zhang H. Strontium-doped bioactive glass-functionalized polyetheretherketone enhances osseointegration by facilitating cell adhesion. Colloids Surf B Biointerfaces 2024; 241:114042. [PMID: 38924850 DOI: 10.1016/j.colsurfb.2024.114042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
In the field of orthopedics, surgeons have long been facing the challenge of loosening of external fixation screws due to inherent material characteristics. Despite Polyetheretherketone (PEEK) being employed as an orthopedic implant material for many years, its bio-inert nature often hinders bone healing due to the limited bioactivity, which restricts its clinical applications. Herein, a new type of orthopedic implant (Sr-SPK) was developed by introducing strontium (Sr)-doped mesoporous bioactive glass (Sr-MBG) onto the surface of PEEK implants through a simple and feasible method. In vitro experiments revealed that Sr-SPK effectively promotes osteogenic differentiation while concurrently suppressing the formation of osteoclasts. The same results were validated in vivo with Sr-SPK significantly improving bone integration. Upon investigation, it was found that Sr-SPK promotes adhesion among bone marrow mesenchymal stem cells (BMSCs) thereby promoting osteogenesis by activating the regulation of actin cytoskeletal and focal adhesion pathways, as identified via transcriptome analysis. In essence, these findings suggest that the newly constructed Sr-doped biofunctionalized PEEK implant developed in this research can promote osteoblast differentiation and suppress osteoclast activity by enhancing cell adhesion processes. These results underline the immense potential of such an implant for wide-ranging clinical applications in orthopedics.
Collapse
Affiliation(s)
- Zihao Xu
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai 200433, China
| | - Licai Miao
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai 200433, China
| | - Xiangyu Meng
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai 200433, China
| | - Junhao Sui
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai 200433, China
| | - Mengchen Chen
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai 200433, China
| | - Zhong Zheng
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai 200433, China
| | - Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai 200003, China.
| | - Shu Liu
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai 200433, China.
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Zou Y, Wang Y, Wang J, Wang S, Chen L, Xi Y, Xie R, Yang J, Xiao X. Preparation of hydroxyapatite and its elimination of excess fluoride from aqueous solution. RSC Adv 2024; 14:26103-26114. [PMID: 39161437 PMCID: PMC11332186 DOI: 10.1039/d4ra02147a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/06/2024] [Indexed: 08/21/2024] Open
Abstract
Excess fluoride in aqueous solutions can significantly affect dental and bone health. This study used two methods to prepare hydroxyapatite to remove fluoride ions from water. The experiments showed that the adsorption capacity and removal rate of hydroxyapatite (Xq-HAP) prepared by the novel method were higher than for the hydroxyapatite (Yt-HAP) prepared by the conventional method. The maximum fluoride ion trapping capacity of Xq-HAP could reach 29.04 mg g-1 under the conditions of pH = 5 and an F ion concentration of 10 mg L-1. The materials were characterized by SEM, XRD, BET, XPS, and FTIR. An investigation was conducted to examine the impact of contact time, adsorbent dosage, fluoride concentration, solution pH, temperature, and several other parameters on the removal of fluoride. Adsorption equilibrium was reached in approximately 3 h at an initial fluoride concentration of 10 mg L-1. It can be seen that the adsorbent has a faster ability to trap fluoride ions. The adsorption kinetics and Langmuir isotherm indicated that fluoride ion adsorption is a monolayer chemisorption process. Further characterization and kinetic studies indicated that the removal mechanism involves ion exchange, electrostatic interactions, and complexation. After five adsorption cycles, the adsorption capacity reaches 23 mg g-1.
Collapse
Affiliation(s)
- Yiming Zou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University Lianyungang 222005 China
- Jiangsu Institute of Marine Resources Development Lianyungang 222005 China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang 222005 China
| | - Yaoting Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University Lianyungang 222005 China
- Jiangsu Institute of Marine Resources Development Lianyungang 222005 China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang 222005 China
| | - Junfu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University Lianyungang 222005 China
- Jiangsu Institute of Marine Resources Development Lianyungang 222005 China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang 222005 China
| | - Song Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University Lianyungang 222005 China
- Jiangsu Institute of Marine Resources Development Lianyungang 222005 China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang 222005 China
| | - Li Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University Lianyungang 222005 China
- Jiangsu Institute of Marine Resources Development Lianyungang 222005 China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang 222005 China
| | - Yu Xi
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University Lianyungang 222005 China
- Jiangsu Institute of Marine Resources Development Lianyungang 222005 China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang 222005 China
| | - Ruliang Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University Lianyungang 222005 China
- Jiangsu Institute of Marine Resources Development Lianyungang 222005 China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang 222005 China
| | - Jie Yang
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University Lianyungang 222005 China
- Jiangsu Institute of Marine Resources Development Lianyungang 222005 China
| | - Xin Xiao
- Jiangsu Institute of Marine Resources Development Lianyungang 222005 China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang 222005 China
| |
Collapse
|
3
|
Sun Y, Shi M, Niu B, Xu X, Xia W, Deng C. Mg-Sr-Ca containing bioactive glass nanoparticles hydrogel modified mineralized collagen scaffold for bone repair. J Biomater Appl 2024; 39:117-128. [PMID: 38775351 DOI: 10.1177/08853282241254741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The aim of this study is to explore the therapeutic effects of Mg-Sr-Ca containing bioactive glass nanoparticles sodium alginate hydrogel modified mineralized collagen scaffold (Mg-Sr-Ca-BGNs-SA-MC) on the repair of osteoporotic bone defect. During the study, Mg-Sr-Ca containing bioactive glass nanoparticles (Mg-Sr-Ca-BGNs) were synthesized using the sol-gel method, and the Mg-Sr-Ca-BGNs-SA-MC scaffold was synthesized by a simple method. The Mg-Sr-Ca-BGNs and the Mg-Sr-Ca-BGNs-SA-MC scaffold were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The elements of Mg, Sr, Ca and Si were effectively integrated into Mg-Sr-Ca-BGNs. SEM analysis revealed the presence of Mg-Sr-Ca-BGNs on the scaffold's surface. Furthermore, the cytotoxicity of the scaffolds were assessed using a live/dead assay. The result of the live/dead assay demonstrated that the scaffold materials were non-toxic to cell growth. More importantly, the in vivo study indicated that implanted scaffold promoted tissue regeneration and integration with newly formed bone. Overall, the Mg-Sr-Ca-BGNs-SA-MC scaffold is suitable for guided bone regeneration and beneficial to repair of osteoporotic bone defects.
Collapse
Affiliation(s)
- Yi Sun
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Min Shi
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Bowen Niu
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Xiangyang Xu
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Wen Xia
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Chao Deng
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| |
Collapse
|
4
|
Abdalla MM, Sayed O, Lung CYK, Rajasekar V, Yiu CKY. Applications of Bioactive Strontium Compounds in Dentistry. J Funct Biomater 2024; 15:216. [PMID: 39194654 DOI: 10.3390/jfb15080216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Divalent cations have captured the interest of researchers in biomedical and dental fields due to their beneficial effects on bone formation. These metallic elements are similar to trace elements found in human bone. Strontium is a divalent cation commonly found in various biomaterials. Since strontium has a radius similar to calcium, it has been used to replace calcium in many calcium-containing biomaterials. Strontium has the ability to inhibit bone resorption and increase bone deposition, making it useful in the treatment of osteoporosis. Strontium has also been used as a radiopacifier in dentistry and has been incorporated into a variety of dental materials to improve their radiopacity. Furthermore, strontium has been shown to improve the antimicrobial and mechanical properties of dental materials, promote enamel remineralization, alleviate dentin hypersensitivity, and enhance dentin regeneration. The objective of this review is to provide a comprehensive review of the applications of strontium in dentistry.
Collapse
Affiliation(s)
- Mohamed Mahmoud Abdalla
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Dental Biomaterials, Faculty of Dental Medicine, Al-Azhar University, Cairo 11651, Egypt
| | - Osama Sayed
- Faculty of Dentistry, Fayoum University, Faiyum 63514, Egypt
| | - Christie Ying Kei Lung
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Vidhyashree Rajasekar
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Shearer A, Molinaro M, Montazerian M, Sly JJ, Miola M, Baino F, Mauro JC. The unexplored role of alkali and alkaline earth elements (ALAEs) on the structure, processing, and biological effects of bioactive glasses. Biomater Sci 2024; 12:2521-2560. [PMID: 38530228 DOI: 10.1039/d3bm01338c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bioactive glass has been employed in several medical applications since its inception in 1969. The compositions of these materials have been investigated extensively with emphasis on glass network formers, therapeutic transition metals, and glass network modifiers. Through these experiments, several commercial and experimental compositions have been developed with varying chemical durability, induced physiological responses, and hydroxyapatite forming abilities. In many of these studies, the concentrations of each alkali and alkaline earth element have been altered to monitor changes in structure and biological response. This review aims to discuss the impact of each alkali and alkaline earth element on the structure, processing, and biological effects of bioactive glass. We explore critical questions regarding these elements from both a glass science and biological perspective. Should elements with little biological impact be included? Are alkali free bioactive glasses more promising for greater biological responses? Does this mixed alkali effect show increased degradation rates and should it be employed for optimized dissolution? Each of these questions along with others are evaluated comprehensively and discussed in the final section where guidance for compositional design is provided.
Collapse
Affiliation(s)
- Adam Shearer
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Matthew Molinaro
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Maziar Montazerian
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Jessica J Sly
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Marta Miola
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy.
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
6
|
Thongsri O, Thaitalay P, Srisuwan S, Khophai S, Suksaweang S, Rojviriya C, Panpisutd P, Patntirapong S, Gough J, Rattanachan ST. Enhanced remineralisation ability and antibacterial properties of sol-gel glass ionomer cement modified by fluoride containing strontium-based bioactive glass or strontium-containing fluorapatite. Dent Mater 2024; 40:716-727. [PMID: 38395738 DOI: 10.1016/j.dental.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVES This study aimed to compare two types of bioactive additives which were strontium-containing fluorinated bioactive glass (SrBGF) or strontium-containing fluorapatite (SrFA) added to sol-gel derived glass ionomer cement (SGIC). The objective was to develop antibacterial and mineralisation properties, using bioactive additives, to minimize the occurrence of caries lesions in caries disease. METHODS Synthesized SrBGF and SrFA nanoparticles were added to SGIC at 1 wt% concentration to improve antibacterial properties against S. mutans, promote remineralisation, and hASCs and hDPSCs viability. Surface roughness and ion-releasing behavior were also evaluated to clarify the effect on the materials. Antibacterial activity was measured via agar disc diffusion and bacterial adhesion. Remineralisation ability was assessed by applying the material to demineralised teeth and subjecting them to a 14-day pH cycle, followed by microCT and SEM-EDS analysis. RESULTS The addition of SrFA into SGIC significantly improved its antibacterial property. SGIC modified with either SrBGF or SrFA additives could similarly induce apatite crystal precipitation onto demineralised dentin and increase dentin density, indicating its ability to remineralise dentin. Moreover, this study also showed that SGIC modified with SrBGF or SrFA additives had promising results on the in vitro cytotoxicity of hASC and hDPSC. SIGNIFICANT SrFA has superior antibacterial property as compared to SrBGF while demonstrating equal remineralisation ability. Furthermore, the modified SGIC showed promising results in reducing the cytotoxicity of hASCs and hDPSCs, indicating its potential for managing caries.
Collapse
Affiliation(s)
- Oranich Thongsri
- School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Paritat Thaitalay
- School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Sawitri Srisuwan
- School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Sasikamon Khophai
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sanong Suksaweang
- School of Pathology and Laboratory Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Catleya Rojviriya
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Piyaphong Panpisutd
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
| | - Somying Patntirapong
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
| | - Julie Gough
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Sirirat Tubsungnoen Rattanachan
- School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
7
|
Silva AV, Gomes DDS, Victor RDS, Santana LNDL, Neves GA, Menezes RR. Influence of Strontium on the Biological Behavior of Bioactive Glasses for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7654. [PMID: 38138796 PMCID: PMC10744628 DOI: 10.3390/ma16247654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Bioactive glasses (BGs) can potentially be applied in biomedicine, mainly for bone repair and replacement, given their unique ability to connect to natural bone tissue and stimulate bone regeneration. Since their discovery, several glass compositions have been developed to improve the properties and clinical abilities of traditional bioactive glass. Different inorganic ions, such as strontium (Sr2+), have been incorporated in BG due to their ability to perform therapeutic functions. Sr2+ has been gaining prominence due to its ability to stimulate osteogenesis, providing an appropriate environment to improve bone regeneration, in addition to its antibacterial potential. However, as there are still points in the literature that are not well consolidated, such as the influence of ionic concentrations and the BG production technique, this review aims to collect information on the state of the art of the biological behavior of BGs containing Sr2+. It also aims to gather data on different types of BGs doped with different concentrations of Sr2+, and to highlight the manufacturing techniques used in order to analyze the influence of the incorporation of this ion for bone regeneration purposes.
Collapse
Affiliation(s)
- Amanda Vieira Silva
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil;
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Déborah dos Santos Gomes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Rayssa de Sousa Victor
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Gelmires Araújo Neves
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| |
Collapse
|
8
|
Abdalla MM, Bijle MN, Abdallah NMA, Yiu CKY. Enamel remineralization potential and antimicrobial effect of a fluoride varnish containing calcium strontium silicate. J Dent 2023; 138:104731. [PMID: 37777085 DOI: 10.1016/j.jdent.2023.104731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023] Open
Abstract
OBJECTIVES To investigate enamel remineralization and antimicrobial effect of sodium fluoride (NaF) varnish containing calcium strontium silicate (CSR). METHODS CSR was synthesized by sol-gel process and incorporated in 5 % NaF varnish at three different concentrations (1 %, 2 %, and 4 % w/v). The treatment/control groups were: 1 % CSR+NaF, 2 % CSR+NaF, 4 % CSR+NaF, NaF, and no treatment. Strontium and fluoride release from the varnishes was evaluated. Sound enamel specimens (n = 6) were demineralized, varnish-treated, and subjected to remineralization cycle. Mineral density of enamel specimens was evaluated using micro-CT. Antimicrobial effect of the varnishes on Streptococcus mutans and Lactobacillus acidophilus biofilms was assessed using confocal laser scanning microscopy. The HGF-1 cytotoxicity of the varnishes was examined using CCK-8 assay. RESULTS Both 2 % and 4 % CSR+NaF varnishes showed significantly higher F release and remineralization potential than NaF varnish (p < 0.05). Dead bacterial proportion of 4 % CSR+NaF varnish was significantly higher than NaF varnish (p < 0.05). The CFUs values of both S. mutans and L. acidophilus were significantly lower in 4 % CSR+NaF group than NaF group (p < 0.05). No significant difference in cell viability was observed among the groups (p > 0.05). CONCLUSIONS Incorporation of 4 % CSR in a NaF varnish significantly enhanced its enamel remineralization and antimicrobial potential with no cytotoxic effect. CLINICAL SIGNIFICANCE Dental caries is a major public health problem globally. The study highlights the great potential of CSR-doped NaF varnish as a novel anti-caries agent with synergistic remineralizing and antimicrobial properties to combat early enamel caries lesions in the general population.
Collapse
Affiliation(s)
- Mohamed Mahmoud Abdalla
- Paediatric Dentistry, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, China; Dental Biomaterials, Faculty of Dental Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohammed Nadeem Bijle
- Paediatric Dentistry, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, China
| | - Nermeen M A Abdallah
- Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, China.
| |
Collapse
|
9
|
Kaou MH, Furkó M, Balázsi K, Balázsi C. Advanced Bioactive Glasses: The Newest Achievements and Breakthroughs in the Area. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2287. [PMID: 37630871 PMCID: PMC10459405 DOI: 10.3390/nano13162287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Bioactive glasses (BGs) are especially useful materials in soft and bone tissue engineering and even in dentistry. They can be the solution to many medical problems, and they have a huge role in the healing processes of bone fractures. Interestingly, they can also promote skin regeneration and wound healing. Bioactive glasses are able to attach to the bone tissues and form an apatite layer which further initiates the biomineralization process. The formed intermediate apatite layer makes a connection between the hard tissue and the bioactive glass material which results in faster healing without any complications or side effects. This review paper summarizes the most recent advancement in the preparation of diverse types of BGs, such as silicate-, borate- and phosphate-based bioactive glasses. We discuss their physical, chemical, and mechanical properties detailing how they affect their biological performances. In order to get a deeper insight into the state-of-the-art in this area, we also consider their medical applications, such as bone regeneration, wound care, and dental/bone implant coatings.
Collapse
Affiliation(s)
- Maroua H. Kaou
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
- Doctoral School of Materials Science and Technologies, Óbuda University, Bécsi Str. 96/B, 1030 Budapest, Hungary
| | - Mónika Furkó
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| | - Katalin Balázsi
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| | - Csaba Balázsi
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| |
Collapse
|
10
|
Zhang M, Yao A, Ai F, Lin J, Fu Q, Wang D. Cobalt-containing borate bioactive glass fibers for treatment of diabetic wound. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:42. [PMID: 37530851 PMCID: PMC10397116 DOI: 10.1007/s10856-023-06741-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Impaired angiogenesis is one of the predominant reasons for non-healing diabetic wounds. Cobalt is well known for its capacity to induce angiogenesis by stabilizing hypoxia-inducible factor-1α (HIF-1α) and subsequently inducing the production of vascular endothelial growth factor (VEGF). In this study, Co-containing borate bioactive glasses and their derived fibers were fabricated by partially replacing CaO in 1393B3 borate glass with CoO. Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) analyses were performed to characterize the effect of Co incorporation on the glass structure, and the results showed that the substitution promoted the transformation of [BO3] into [BO4] units, which endow the glass with higher chemical durability and lower reaction rate with the simulated body fluid (SBF), thereby achieving sustained and controlled Co2+ ion release. In vitro biological assays were performed to assess the angiogenic potential of the Co-containing borate glass fibers. It was found that the released Co2+ ion significantly enhanced the proliferation, migration and tube formation of the Human Umbilical Vein Endothelial Cells (HUVECs) by upregulating the expression of angiogenesis-related proteins such as HIF-1α and VEGF. Finally. In vivo results demonstrated that the Co-containing fibers accelerated full-thickness skin wound healing in streptozotocin (STZ)-induced diabetic rat model by promoting angiogenesis and re-epithelialization.
Collapse
Affiliation(s)
- Minhui Zhang
- School of Materials Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Aihua Yao
- School of Materials Science and Engineering, Tongji University, 200092, Shanghai, China
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, 200092, Shanghai, China
| | - Fanrong Ai
- School of Mechatronics Engineering, Nanchang University, 330031, Nanchang, China
| | - Jian Lin
- School of Materials Science and Engineering, Tongji University, 200092, Shanghai, China.
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, 200092, Shanghai, China.
| | - Qingge Fu
- Department of Orthopedic trauma, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China.
| | - Deping Wang
- School of Materials Science and Engineering, Tongji University, 200092, Shanghai, China
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, 200092, Shanghai, China
| |
Collapse
|
11
|
Namdar A, Salahinejad E. Advances in ion-doping of Ca-Mg silicate bioceramics for bone tissue engineering. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Imran E, Cooper PR, Ratnayake J, Ekambaram M, Mei ML. Potential Beneficial Effects of Hydroxyapatite Nanoparticles on Caries Lesions In Vitro-A Review of the Literature. Dent J (Basel) 2023; 11:40. [PMID: 36826185 PMCID: PMC9955150 DOI: 10.3390/dj11020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Dental caries is one of the most common human diseases which can occur in both primary and permanent dentitions throughout the life of an individual. Hydroxyapatite is the major inorganic component of human teeth, consequently, nanosized hydroxyapatite (nHAP) has recently attracted researchers' attention due to its unique properties and potential for caries management. This article provides a contemporary review of the potential beneficial effects of nHAP on caries lesions demonstrated in in vitro studies. Data showed that nHAP has potential to promote mineralization in initial caries, by being incorporated into the porous tooth structure, which resulted from the caries process, and subsequently increased mineral content and hardness. Notably, it is the particle size of nHAP which plays an important role in the mineralization process. Antimicrobial effects of nHAP can also be achieved by metal substitution in nHAP. Dual action property (mineralizing and antimicrobial) and enhanced chemical stability and bioactivity of nHAP can potentially be obtained using metal-substituted fluorhydroxyapatite nanoparticles. This provides a promising synergistic strategy which should be explored in further clinical research to enable the development of dental therapeutics for use in the treatment and management of caries.
Collapse
Affiliation(s)
- Eisha Imran
- Department of Dental Materials, Islamabad Medical and Dental College, Islamabad 44000, Pakistan
| | - Paul R. Cooper
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Jithendra Ratnayake
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Manikandan Ekambaram
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - May Lei Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
13
|
Occlusion effects of bioactive glass and hydroxyapatite on dentinal tubules: a systematic review. Clin Oral Investig 2022; 26:6061-6078. [DOI: 10.1007/s00784-022-04639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/12/2022] [Indexed: 11/03/2022]
|
14
|
Dai LL, Mei ML, Chu CH, Lo ECM. Effect of strontium-doped bioactive glass-ceramic containing toothpaste on prevention of artificial dentine caries formation: an in vitro study. BMC Oral Health 2022; 22:288. [PMID: 35842639 PMCID: PMC9287712 DOI: 10.1186/s12903-022-02321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Backgroud Root caries in aging population was prevalent worldwide. Due to the absence of enamel and specific structure of dentine, bacteria are able to penetrate further into dentine at an earlier stage of lesion development. The aim of this study was to investigate the effect of adding of a strontium-doped bioactive glass-ceramic (HX-BGC) to a fluoride-free toothpaste on prevention of formation of artificial dentine caries. Methods Thirty-six human tooth specimens were allocated to three groups (n = 12 per group). Group 1 treated with slurry containing a fluoride-free toothpaste and 5% HX-BGC, Group 2 was treated with fluoride-free toothpaste slurry, and Group 3 received deionized water as a negative control. The specimens were subjected to four cycles (15 h demineralization and 8 h remineralization for one cycle) of biochemical cycling. A mixed suspension of five bacteria species (Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, Lactobacillus rhamnosus, and Actinomyces naeslundii) were prepared in brain heart infusion broth with 5% sucrose and used as acidic challenge in biochemical cycling. Subsequently, surface morphology of the dentine lesion was assessed by scanning electron microscopy, while the lesion depths and mineral loss were assessed by micro-computed tomography. Results The mean lesion depths in dentine in Groups 1 to 3 were 87.79 ± 16.99 μm, 101.06 ± 10.04 μm and 113.60 ± 16.36 μm, respectively (p = 0.002). The mean amounts of mineral loss in Groups 1 to 3 were 0.82 ± 0.10 g/cm3, 0.89 ± 0.09 g/cm3 and 0.96 ± 0.11 g/cm3, respectively (p = 0.016). No obvious differences in the surface morphology were seen among the groups. Conclusion Addition of strontium-doped bioactive glass-ceramic to fluoride-free toothpaste has potential to reduce formation of dentine lesions.
Collapse
Affiliation(s)
- Lin Lu Dai
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - May Lei Mei
- Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Edward Chin Man Lo
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China.
| |
Collapse
|
15
|
Wan W, Li Z, Wang X, Tian F, Yang J. Surface-Fabrication of Fluorescent Hydroxyapatite for Cancer Cell Imaging and Bio-Printing Applications. BIOSENSORS 2022; 12:bios12060419. [PMID: 35735566 PMCID: PMC9221440 DOI: 10.3390/bios12060419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 05/07/2023]
Abstract
Hydroxyapatite (HAP) materials are widely applied as biomedical materials due to their stable performance, low cost, good biocompatibility and biodegradability. Here, a green, fast and efficient strategy was designed to construct a fluorescent nanosystem for cell imaging and drug delivery based on polyethyleneimine (PEI) and functionalized HAP via simple physical adsorption. First, HAP nanorods were functionalized with riboflavin sodium phosphate (HE) to provide them with fluorescence properties based on ligand-exchange process. Next, PEI was attached on the surface of HE-functionalized HAP (HAP-HE@PEI) via electrostatic attraction. The fluorescent HAP-HE@PEI nanosystem could be rapidly taken up by NIH-3T3 fibroblast cells and successfully applied to for cell imaging. Additionally, doxorubicin hydrochloride (DOX) containing HAP-HE@PEI with high loading capacity was prepared, and in-vitro release results show that the maximum release of DOX at pH 5.4 (31.83%) was significantly higher than that at pH 7.2 (9.90%), which can be used as a drug delivery tool for cancer therapy. Finally, HAP-HE@PEI as the 3D inkjet printing ink were printed with GelMA hydrogel, showing a great biocompatible property for 3D cell culture of RAW 264.7 macrophage cells. Altogether, because of the enhanced affinity with the cell membrane of HAP-HE@PEI, this green, fast and efficient strategy may provide a prospective candidate for bio-imaging, drug delivery and bio-printing.
Collapse
Affiliation(s)
- Weimin Wan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ziqi Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fei Tian
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Correspondence:
| |
Collapse
|
16
|
El Baakili S, El Mabrouk K, Bricha M. Acellular bioactivity and drug delivery of new strontium doped bioactive glasses prepared through a hydrothermal process. RSC Adv 2022; 12:15361-15372. [PMID: 35693223 PMCID: PMC9119053 DOI: 10.1039/d2ra02416k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022] Open
Abstract
This work aims to study the kinetics of apatite layer formation on the surface of strontium doped binary bioactive glasses (BG: 63S37C) prepared for the first time by a hydrothermal process and evaluate their potential for drug loading and release using ibuprofen (IBU) as an anti-inflammatory drug vector. First, the binary glass 63S37C was doped with various amounts of strontium, from 0.2 to 1 mol%. Subsequently, the amorphous state of the samples and the microstructure were assessed by TGA, XRD, FTIR, ICP-AES, and SEM-EDS. Next, the in vitro bioactivity was evaluated by following the surface morphology and composition changes of soaked samples for up to 14 days at 37 °C in simulated bodily fluid (SBF). Finally, SEM-EDS spectroscopy showed clearly the appearance of needle-shaped apatite on amorphous glass substrates at the earlier stages of immersion for bioglasses doped with strontium. These findings are also confirmed with XRD and FTIR analysis. Furthermore, 63S37C BG proved that the drug release increased with increasing strontium content. Altogether, this novel class of bioactive glasses may be considered to have a promising future for biomedical applications.
Collapse
Affiliation(s)
- Salwa El Baakili
- Euromed Research Center, Euromed Engineering Faculty, Euromed University of Fes, Eco-Campus Fes-Meknes Road 30030 Fes Morocco
| | - Khalil El Mabrouk
- Euromed Research Center, Euromed Engineering Faculty, Euromed University of Fes, Eco-Campus Fes-Meknes Road 30030 Fes Morocco
| | - Meriame Bricha
- Euromed Research Center, Euromed Engineering Faculty, Euromed University of Fes, Eco-Campus Fes-Meknes Road 30030 Fes Morocco
| |
Collapse
|
17
|
Yang W, Ali A, Su J, Liu J, Wang Z, Zhang L. Microbial induced calcium precipitation based anaerobic immobilized biofilm reactor for fluoride, calcium, and nitrate removal from groundwater. CHEMOSPHERE 2022; 295:133955. [PMID: 35157876 DOI: 10.1016/j.chemosphere.2022.133955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
In this study, the anaerobic quartz sand fixed biofilm reactor containing Cupriavidus sp. W12 was established to simultaneously remove calcium (Ca2+), fluoride (F-) and nitrate (NO3-N) from groundwater. After 84 days of continuous operation, the optimum operating parameters and defluoridation mechanism were explored, and the microbial community structure under different pH environments were compared and analyzed. Under the optimal operation conditions (HRT of 6 h, initial Ca2+ concentration of 180 mg L-1, and pH of 7.0), the removal efficiencies of Ca2+, F-, and NO3-N were 58.97%, 91.93%, and 100%, respectively. Gas chromatography (GC) results indicate that N2 is the main gas produced by the bioreactor. Three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM) showed that extracellular polymers (EPS) are produced during bacterial growth and metabolism. The results of Scanning electron microscopy-energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FTIR) demonstrated that the defluoridation mechanism is attributed to the synergetic effects of ion exchange, co-precipitation, and chemisorption. The comparative analysis of the microbial community structure under different pH conditions show that Cupriavidus is the dominant bacteria in the bioreactor throughout the experiment, and it shows a prominent advantage at pH of 7.0. This research provides an application foundation for anaerobic microbial induced calcium precipitation (MICP) bioremediation of Ca2+, F-, and NO3-N from groundwater.
Collapse
Affiliation(s)
- Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Jiaran Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lingfei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
18
|
Zalite V, Lungevics J, Vecstaudza J, Stipniece L, Locs J. Nanosized calcium deficient hydroxyapatites for tooth enamel protection. J Biomed Mater Res B Appl Biomater 2021; 110:1354-1367. [PMID: 34965008 PMCID: PMC9306847 DOI: 10.1002/jbm.b.35005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022]
Abstract
Calcium phosphates (CaP) are extensively studied as additives to dental care products for tooth enamel protection against caries. However, it is not clear yet whether substituted CaP could provide better enamel protection. In this study we produced, characterized and tested in vitro substituted and co‐substituted calcium deficient hydroxyapatite (CDHAp) with Sr2+ and F− ions. X‐ray powder diffractometry, Fourier transformation infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray analysis, Brunauer–Emmett–Teller were used to characterize synthesized powders and also cytotoxicity was evaluated. pH = f(t) test was performed to estimate, weather synthesized CDHAp suspensions are able to increase pH of experimental media after acid addition. Synthesis products were incorporated into paste to perform in vitro remineralization on the bovine enamel. In addition to mentioned instrumental methods, profilometry was used for evaluation of remineralised enamel samples. The obtained results confirmed formation of CDHAp substituted with 1.5–1.6 wt% of fluoride and 7.4–7.8 wt% of strontium. pH = f(t) experiment pointed out that pH increased by approximately 0.3 within 10 min after acid addition for all CDHAp suspensions. A new layer of the corresponding CDHAp was formed on the enamel. Its thickness increased by 0.8 ± 0.1 μm per day and reached up to 5.8 μm after 7 days. Additionally, octa calcium phosphates were detected on the surface of control samples. In conclusion, we can assume that CDHAp substituted with Sr2+ and/or F− could be used as an effective additive to dental care products promoting formation of protecting layer on the enamel, but there was no significant difference among sample groups.
Collapse
Affiliation(s)
- Vita Zalite
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Janis Lungevics
- Department of Mechanical Engineering and Mechatronics, Faculty of Mechanical Engineering, Transport and Aeronautics, Riga Technical University, Riga, Latvia
| | - Jana Vecstaudza
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Liga Stipniece
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia.,Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
19
|
Niu JY, Yin IX, Wu WKK, Li QL, Mei ML, Chu CH. Efficacy of the dual-action GA-KR12 peptide for remineralising initial enamel caries: an in vitro study. Clin Oral Investig 2021; 26:2441-2451. [PMID: 34635946 DOI: 10.1007/s00784-021-04210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the antibiofilm and remineralising effects of the dual-action peptide GA-KR12 on artificial enamel caries. MATERIALS AND METHODS Enamel blocks with artificial caries were treated with sterilised deionised water as control or GA-KR12. The blocks underwent biochemical cycling with Streptococcus mutans for 3 weeks. The architecture, viability, and growth kinetics of the biofilm were determined, respectively, by scanning electron microscopy (SEM), confocal laser scanning microscopy, and quantitative (culture colony-forming units, CFUs). The mineral loss, calcium-to-phosphorus ratio, surface morphology, and crystal characteristics of the enamel surface were determined, respectively, using micro-computed tomography, energy dispersive spectroscopy, SEM, and X-ray diffraction (XRD). RESULTS SEM showed confluent growth of S. mutans in the control group but not in the GA-KR12-treated group. The dead-to-live ratios of the control and GA-KR12-treated groups were 0.42 ± 0.05 and 0.81 ± 0.08, respectively (p < 0.001). The log CFUs of the control and GA-KR12-treated groups were 8.15 ± 0.32 and 6.70 ± 0.49, respectively (p < 0.001). The mineral losses of the control and GA-KR12-treated groups were 1.39 ± 0.09 gcm-3 and 1.19 ± 0.05 gcm-3, respectively (p < 0.001). The calcium-to-phosphorus molar ratios of the control and GA-KR12-treated groups were 1.47 ± 0.03 and 1.57 ± 0.02, respectively (p < 0.001). A uniformly remineralised prismatic pattern on enamel blocks was observed in the GA-KR12-treated but not in the control group. The hydroxyapatite in the GA-KR12-treated group was better crystallised than that in the control group. CONCLUSION The dual-action peptide GA-KR12 inhibited the growth of S. mutans biofilm and promoted the remineralisation of enamel caries. CLINICAL RELEVANCE GA-KR12 potentially is applicable for managing enamel caries.
Collapse
Affiliation(s)
- John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,Department of Oral Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Quan-Li Li
- School of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China. .,Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Dai LL, Mei ML, Chu CH, Zhao IS, Lo ECM. Effect of Strontium-Doped Bioactive Glass on Preventing Formation of Demineralized Lesion. MATERIALS 2021; 14:ma14164645. [PMID: 34443169 PMCID: PMC8399109 DOI: 10.3390/ma14164645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023]
Abstract
This study investigated the effect of strontium-doped bioactive glass (SBAG) on the formation of dental demineralized lesions. Materials and methods: The study materials were 48 sound human tooth specimens with both dentine and enamel, divided equally into four groups: Group 1 (SBAG), Group 2 (SBAG+Fluoride), Group 3 (Fluoride), and Group 4 (Water as control). After 14 days of pH cycling, the surface morphology of the specimens was observed by scanning electron microscopy. Crystal characteristics of the precipitates were assessed by X-ray diffraction (XRD). Micro-CT was used to measure the mineral loss and the depths of the demineralized lesions formed. Results: Exposure of collagen in inter-tubular areas in dentine was seen in the control group (Group 4) but not in Groups 1 to 3. In Group 2, there were obvious granular particles on the surface of the dentine. XRD revealed precipitation of apatites on the surface of the tooth specimens in Groups 1 to 3. The mean lesion depths in dentine were 81.80 μm, 30.68 μm, 39.04 μm, and 146.36 μm in Groups 1 to 4, respectively (p < 0.001). Lesions in enamel were only found in the control group. The mean mineral loss values in the dentine lesions were 1.25 g/cm3, 0.88 g/cm3, 0.87 g/cm3, and 1.65 g/cm3, in Groups 1 to 4, respectively (p < 0.001). Conclusion: Strontium-doped bioactive glass has a preventive effect on the formation of demineralized lesions in enamel and dentine.
Collapse
Affiliation(s)
- Lin-Lu Dai
- Faculty of Dentistry, The University of Hong Kong, Hong Kong; (L.-L.D.); (C.-H.C.)
| | - May-Lei Mei
- Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand;
| | - Chun-Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong; (L.-L.D.); (C.-H.C.)
| | - Irene Shuping Zhao
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen 518000, China;
| | - Edward Chin-Man Lo
- Faculty of Dentistry, The University of Hong Kong, Hong Kong; (L.-L.D.); (C.-H.C.)
- Correspondence: ; Tel.: +852-2859-0292
| |
Collapse
|