1
|
Niu JY, Zhang OL, Yin IX, Mei ML, Jakubovics NS, Chu CH. Remineralising enamel caries with a novel peptide: An in vitro study. J Dent 2024; 151:105456. [PMID: 39528154 DOI: 10.1016/j.jdent.2024.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE To evaluate the antibacterial and remineralising effects of GAPI peptide on artificial enamel caries. METHODS Human enamel blocks were exposed to Streptococcus mutans biofilm to create artificial carious lesions. The blocks were randomly assigned to either the GAPI treatment group or the deionised water control group, treated twice daily for 21 days. The viability, growth kinetics, and morphology of S. mutans biofilms were assessed using confocal laser scanning microscopy (CLSM), colony-forming unit (CFU) counting, and scanning electron microscopy (SEM). Lesion depth, mineral loss, calcium-to-phosphorus ratio, Knoop hardness, enamel surface morphology, and crystal characteristics of enamel lesions were determined using micro-computed tomography (Micro-CT), SEM-energy dispersive spectroscopy (EDS), a microhardness tester, SEM, and X-ray diffraction (XRD). RESULTS CLSM showed that the dead-to-live ratio of S. mutans was 0.8 ± 0.1 in the GAPI group and 0.4 ± 0.1 in the control group (p < 0.001). The Log CFUs were 6.9 ± 0.7 in the GAPI group and 8.1 ± 0.5 in the control group (p = 0.002). SEM revealed confluent growth of S. mutans in the control group but not in the GAPI group, which also exhibited cell damage. Micro-CT showed that the lesion depth (µm) was 142 ± 11 in the GAPI group and 178 ± 20 in the control group (p < 0.001), with mineral loss (gcm⁻³) of 1.1 ± 0.1 and 1.5 ± 0.1, respectively (p < 0.001). SEM-EDS indicated that the calcium-to-phosphorus ratio was 1.71 ± 0.02 in the GAPI group and 1.67 ± 0.03 in the control group (p = 0.006). Additionally, Knoop hardness was 302 ± 22 in the GAPI group and 242 ± 17 in the control group (p < 0.001). SEM revealed an orderly pattern of enamel rods in the GAPI group, and XRD showed better crystallisation of hydroxyapatite in the GAPI group compared to the control group. CONCLUSION GAPI exhibits antibacterial and remineralising properties against artificial enamel caries. CLINICAL SIGNIFICANCE If the anti-caries properties of GAPI are confirmed in clinical studies, it could be used for caries prevention.
Collapse
Affiliation(s)
- John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; School of Dental Sciences, Newcastle University, Newcastle, UK
| | | | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Nicholas Stephen Jakubovics
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; School of Dental Sciences, Newcastle University, Newcastle, UK.
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Xu VW, Yin IX, Niu JY, Yu OY, Nizami MZI, Chu CH. The anti-caries effects of copper tetraamine fluoride on enamel: An in vitro study. J Dent 2024; 151:105446. [PMID: 39489328 DOI: 10.1016/j.jdent.2024.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE To investigate the antibacterial, remineralising, and discolouring effects of copper tetraamine fluoride (CTF) on artificial enamel caries. METHOD Human enamel blocks with artificial caries were treated with CTF, silver diamine fluoride (SDF, positive control) and water (negative control) before being challenged with Streptococcus mutans. The morphology, viability, and growth kinetics of biofilm were evaluated using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and colony-forming unit (CFU) counting. The lesion depths, mineral loss, micro-hardness, and crystal characteristics were assessed using micro-computed tomography, Knoop Hardness Tester, and X-ray diffraction (XRD), respectively. The discolouring property was assessed by spectrophotometry. RESULTS SEM showed that bacteria completely covered the enamel surface treated with water, but not the enamel surface treated with CTF and SDF. CLSM showed dead-to-live ratio of biofilm treated with CTF, SDF and water were 0.8 ± 0.1, 0.9 ± 0.2 and 0.5 ± 0.1 (p < 0.001, CTF, SDF>Water). Log10 CFU values of biofilm treated with CTF, SDF and water were 7.7 ± 0.2, 7.7 ± 0.1 and 8.1 ± 0.1 (p < 0.001, CTF, SDF Water). XRD revealed well-crystallised hydroxyapatite in enamel treated with CTF and SDF, but not water. Spectrophotometry showed ΔE values of the CTF, SDF and water groups were 5 ± 3, 54 ± 6 and 6 ± 2 (p < 0.001, CTF, waterCONCLUSION CTF inhibited Streptococcus mutans biofilm and remineralised artificial enamel caries without discolouration. CLINICAL SIGNIFICANCE If CTF is successfully translated into clinical use, it can be a simple agent for clinicians to arrest enamel caries.
Collapse
Affiliation(s)
| | | | - John Yun Niu
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - Ollie Yiru Yu
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - Mohammed Zahedul Islam Nizami
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China; Department of Mineralized Tissue Biology and Bioengineering, The ADA Forsyth Institute, Cambridge, MA, USA.
| | - Chun Hung Chu
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Chen Y, Li Z, Wei Y, Guo X, Li M, Xia Y, Wu Y, Liao M, Wang S, Wang H, Zhou X, Lan F, Cheng L. Effects of a Novel Magnetic Nanomaterial on Oral Biofilms. Int Dent J 2024:S0020-6539(24)01412-6. [PMID: 39322517 DOI: 10.1016/j.identj.2024.07.1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 09/27/2024] Open
Abstract
Dental caries is one of the most common oral chronic infectious diseases, and novel antibacterial materials must be developed to control plaque and inhibit formation of dental caries. Combining magnetic nanomaterials with antibacterial agents to decrease the formation of bacterial biofilm has been a hot topic in the biomedical field. The present study developed a novel magnetic nanomaterial chemically combined with dimethylaminododecyl methacrylate (DMADDM) and initially investigated its inhibiting effects on biofilms by using traditional caries-related bacteria and saliva flora models. The novel magnetic nanomaterials successfully loaded DMADDM according to thermogravimetric analysis, Fourier transform infrared spectroscopy, x-ray diffraction, vibrating sample magnetometry, scanning electron microscopy, and transmission electron microscopy results. Further, the novel nanoparticle Fe3O4@SiO2@DMADDM with concentration of 8 mg/mL could effectively reduce Streptococcus mutans biofilm and decrease the production of lactic acid. The 16S rDNA sequencing revealed that Fe3O4@SiO2@DMADDM could depress the proportion of caries-related bacteria in saliva-derived biofilm, such as Streptococcus, Veillonella, and Neisseria. Therefore, Fe3O4@SiO2@DMADDM is a novel effective antibacterial magnetic nanomaterial and has clinical potential in plaque control and dental caries prevention.
Collapse
Affiliation(s)
- Yanru Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhiyu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yu Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Min Liao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Suping Wang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haohao Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Zhang OL, Niu JY, Yu OY, Mei ML, Jakubovics NS, Chu CH. Development of a Novel Peptide with Antimicrobial and Mineralising Properties for Caries Management. Pharmaceutics 2023; 15:2560. [PMID: 38004539 PMCID: PMC10675526 DOI: 10.3390/pharmaceutics15112560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of the study is to develop a novel peptide for caries management. Gallic-Acid-Polyphemusin-I (GAPI) was synthesised by grafting Polyphemusin I (PI) and gallic acid (GA). Biocompatibility was evaluated using a Cell Counting Kit-8 Assay. Antimicrobial properties were assessed using minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). The bacterial and fungal morphology after GAPI treatment was investigated using transmission electron microscopy (TEM). The architecture of a consortium biofilm consisting of Streptococcus mutans, Lacticaseibacillus casei and Candida albicans was evaluated using scanning electron microscopy (SEM) and confocal laser scanning microscopy. The growth kinetics of the biofilm was examined using a propidium monoazide-quantitative polymerase chain reaction. The surface and calcium-to-phosphorus molar ratio of GAPI-treated enamel after pH cycling were examined with SEM and energy-dispersive X-ray spectroscopy. Enamel crystal characteristics were analysed using X-ray diffraction. Lesion depths representing the enamel's mineral loss were assessed using micro-computed tomography. The MIC of GAPI against S. mutans, L. casei and C. albicans were 40 μM, 40 μM and 20 μM, respectively. GAPI destroyed the biofilm's three-dimensional structure and inhibited the growth of the biofilm. SEM showed that enamel treated with GAPI had a relatively smooth surface compared to that treated with water. The calcium-to-phosphorus molar ratio of enamel treated with GAPI was higher than that of the control. The lesion depths and mineral loss of the GAPI-treated enamel were less than the control. The crystallinity of the GAPI-treated enamel was higher than the control. This study developed a biocompatible, mineralising and antimicrobial peptide GAPI, which may have potential as an anti-caries agent.
Collapse
Affiliation(s)
- Olivia Lili Zhang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
| | - John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
- Faculty of Dentistry, The University of Otago, Dunedin 9054, New Zealand
| | - Nicholas Stephen Jakubovics
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
| |
Collapse
|
5
|
Yan J, Cao L, Luo T, Qin D, Hua F, He H. In vitro evaluation of a novel fluoride-coated clear aligner with antibacterial and enamel remineralization abilities. Clin Oral Investig 2023; 27:6027-6042. [PMID: 37620439 DOI: 10.1007/s00784-023-05216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE To investigate the antibacterial and enamel remineralization performances as well as physicochemical properties and biocompatibility of a fluoride-coated clear aligner plastic (FCAP). MATERIALS AND METHODS FCAP and normal clear aligner plastic (CAP) was bought from the manufacturer (Angelalign Technology Inc, China). The FCAP was observed under scanning electron microscopy. Its element composition, resistance to separation, contact angle, and protein adhesion performance were characterized. Colony-forming unit (CFU) count and 3-(4,5)-dimethylthiazol(-z-y1)-3,5-diphenyltetrazolium bromide (MTT) assay were used to evaluate the antibacterial ability of Streptococcus mutans. Fluoride release-recharge patterns were obtained. Apatite formation was evaluated after immersing FCAP in artificial saliva. Enamel remineralization capability was evaluated in the demineralization model (immersing samples in demineralization solution for 36 h) and pH cycling model (immersing samples in demineralization solution and remineralization solution in turns for 14 days). Cell Counting Kit-8 (CCK-8) and live/dead cell staining kits were used for cytotoxicity assay. RESULTS The FCAP showed uniformly distributed fluoride and did not compromise protein adhesion performance. CFU count (5.47 ± 0.55 for CAP, 3.63 ± 0.38 for FCAP) and MTT assay (0.41 ± 0.025 for CAP, 0.28 ± 0.038) indicated that the FCAP had stronger antibacterial activity compared with normal CAP (P < 0.05 for both evaluations). The FCAP could release fluoride continuously for 14 days and could be recharged after immersing in NaF solution. The FCAP could induce the formation of hydroxyapatite in artificial saliva and could reduce the microhardness decrease, color change, and mineral loss of enamels in both two models (P < 0.05 for all evaluations). CCK-8 and live/dead cell staining analyses showed that the coating did not compromise the biocompatibility of the clear aligner (P > 0.05 for CCK-8 evaluation). CONCLUSIONS The FCAP had antibacterial, fluoride recharge, and enamel remineralization abilities while it did not compromise physicochemical properties and biocompatibility. CLINICAL RELEVANCE The FCAP has the potential to prevent enamel demineralization during clear aligner treatment.
Collapse
Affiliation(s)
- Jiarong Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lingyun Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Danchen Qin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fang Hua
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Center for Orthodontics and Pediatric Dentistry at Optics Valley Branch, School & Hospital of Stomatology , Wuhan University, Wuhan, China.
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Zhang OL, Niu JY, Yin IX, Yu OY, Mei ML, Chu CH. Antibacterial Properties of the Antimicrobial Peptide Gallic Acid-Polyphemusin I (GAPI). Antibiotics (Basel) 2023; 12:1350. [PMID: 37760647 PMCID: PMC10525608 DOI: 10.3390/antibiotics12091350] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
A novel antimicrobial peptide, GAPI, has been developed recently by grafting gallic acid (GA) to polyphemusin I (PI). The objective of this study was to investigate the antibacterial effects of GAPI on common oral pathogens. This laboratory study used minimum inhibitory concentrations and minimum bactericidal concentrations to assess the antimicrobial properties of GAPI against common oral pathogens. Transmission electron microscopy was used to examine the bacterial morphology both before and after GAPI treatment. The results showed that the minimum inhibitory concentration ranged from 20 μM (Lactobacillus rhamnosus) to 320 μM (Porphyromonas gingivalis), whereas the minimum bactericidal concentration ranged from 80 μM (Lactobacillus acidophilus) to 640 μM (Actinomyces naeslundii, Enterococcus faecalis, and Porphyromonas gingivalis). Transmission electron microscopy showed abnormal curvature of cell membranes, irregular cell shapes, leakage of cytoplasmic content, and disruption of cytoplasmic membranes and cell walls. In conclusion, the GAPI antimicrobial peptide is antibacterial to common oral pathogens, with the potential to be used to manage oral infections.
Collapse
Affiliation(s)
- Olivia Lili Zhang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (I.X.Y.); (O.Y.Y.)
| | - John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (I.X.Y.); (O.Y.Y.)
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (I.X.Y.); (O.Y.Y.)
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (I.X.Y.); (O.Y.Y.)
| | - May Lei Mei
- Faculty of Dentistry, The University of Otago, Dunedin 9054, New Zealand;
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (I.X.Y.); (O.Y.Y.)
| |
Collapse
|
7
|
Zhang OL, Niu JY, Yin IX, Yu OY, Mei ML, Chu CH. Bioactive Materials for Caries Management: A Literature Review. Dent J (Basel) 2023; 11:dj11030059. [PMID: 36975556 PMCID: PMC10047026 DOI: 10.3390/dj11030059] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Researchers have developed novel bioactive materials for caries management. Many clinicians also favour these materials, which fit their contemporary practice philosophy of using the medical model of caries management and minimally invasive dentistry. Although there is no consensus on the definition of bioactive materials, bioactive materials in cariology are generally considered to be those that can form hydroxyapatite crystals on the tooth surface. Common bioactive materials include fluoride-based materials, calcium- and phosphate-based materials, graphene-based materials, metal and metal-oxide nanomaterials and peptide-based materials. Silver diamine fluoride (SDF) is a fluoride-based material containing silver; silver is antibacterial and fluoride promotes remineralisation. Casein phosphopeptide-amorphous calcium phosphate is a calcium- and phosphate-based material that can be added to toothpaste and chewing gum for caries prevention. Researchers use graphene-based materials and metal or metal-oxide nanomaterials as anticaries agents. Graphene-based materials, such as graphene oxide-silver, have antibacterial and mineralising properties. Metal and metal-oxide nanomaterials, such as silver and copper oxide, are antimicrobial. Incorporating mineralising materials could introduce remineralising properties to metallic nanoparticles. Researchers have also developed antimicrobial peptides with mineralising properties for caries prevention. The purpose of this literature review is to provide an overview of current bioactive materials for caries management.
Collapse
Affiliation(s)
| | - John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Faculty of Dentistry, The University of Otago, Dunedin 9054, New Zealand
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Correspondence:
| |
Collapse
|
8
|
Peptide Designs for Use in Caries Management: A Systematic Review. Int J Mol Sci 2023; 24:ijms24044247. [PMID: 36835657 PMCID: PMC9961499 DOI: 10.3390/ijms24044247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
The objective of this study was to review the design methods that have been used to create peptides for use in caries management. Two independent researchers systematically reviewed many in vitro studies in which peptides were designed for use in caries management. They assessed the risk of bias in the included studies. This review identified 3592 publications, of which 62 were selected. Forty-seven studies reported 57 antimicrobial peptides. Among them, 31 studies (66%, 31/47) used the template-based design method; 9 studies (19%, 9/47) used the conjugation method; and 7 studies (15%, 7/47) used other methods, such as the synthetic combinatorial technology method, the de novo design method and cyclisation. Ten studies reported mineralising peptides. Seven of these (70%, 7/10) used the template-based design method, two (20%, 2/10) used the de novo design method, and one study (10%, 1/10) used the conjugation method. In addition, five studies developed their own peptides with antimicrobial and mineralising properties. These studies used the conjugation method. Our assessment for the risk of bias in the 62 reviewed studies showed that 44 publications (71%, 44/62) had a medium risk and that 3 publications had a low risk (5%, 3/62). The two most common methods for developing peptides for use in caries management that were used in these studies were the template-based design method and the conjugation method.
Collapse
|
9
|
Imran E, Cooper PR, Ratnayake J, Ekambaram M, Mei ML. Potential Beneficial Effects of Hydroxyapatite Nanoparticles on Caries Lesions In Vitro-A Review of the Literature. Dent J (Basel) 2023; 11:40. [PMID: 36826185 PMCID: PMC9955150 DOI: 10.3390/dj11020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Dental caries is one of the most common human diseases which can occur in both primary and permanent dentitions throughout the life of an individual. Hydroxyapatite is the major inorganic component of human teeth, consequently, nanosized hydroxyapatite (nHAP) has recently attracted researchers' attention due to its unique properties and potential for caries management. This article provides a contemporary review of the potential beneficial effects of nHAP on caries lesions demonstrated in in vitro studies. Data showed that nHAP has potential to promote mineralization in initial caries, by being incorporated into the porous tooth structure, which resulted from the caries process, and subsequently increased mineral content and hardness. Notably, it is the particle size of nHAP which plays an important role in the mineralization process. Antimicrobial effects of nHAP can also be achieved by metal substitution in nHAP. Dual action property (mineralizing and antimicrobial) and enhanced chemical stability and bioactivity of nHAP can potentially be obtained using metal-substituted fluorhydroxyapatite nanoparticles. This provides a promising synergistic strategy which should be explored in further clinical research to enable the development of dental therapeutics for use in the treatment and management of caries.
Collapse
Affiliation(s)
- Eisha Imran
- Department of Dental Materials, Islamabad Medical and Dental College, Islamabad 44000, Pakistan
| | - Paul R. Cooper
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Jithendra Ratnayake
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Manikandan Ekambaram
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - May Lei Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
10
|
Xu VW, Nizami MZI, Yin IX, Lung CYK, Yu OY, Chu CH. Caries Management with Non-Metallic Nanomaterials: A Systematic Review. Int J Nanomedicine 2022; 17:5809-5824. [PMID: 36474525 PMCID: PMC9719741 DOI: 10.2147/ijn.s389038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/23/2022] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Non-metallic nanomaterials do not stain enamel or dentin. Most have better biocompatibility than metallic nanomaterials do for management of dental caries. OBJECTIVE The objective of this study is to review the types, properties and potential uses of non-metallic nanomaterials systematically for managing dental caries. METHODS Two researchers independently performed a literature search of publications in English using PubMed, Scopus and Web of Science. The keywords used were (nanoparticles OR nanocomposites OR nanomaterials) AND (caries OR tooth decay). They screened the titles and abstracts to identify potentially eligible publications of original research reporting non-metallic nanomaterials for caries management. Then, they retrieved and studied the full text of the identified publications for inclusion in this study. RESULTS Out of 2497 resulting publications, this study included 75 of those. The non-metallic nanomaterials used in these publications were categorized as biological organic nanomaterials (n=45), synthetic organic nanomaterials (n=15), carbon-based nanomaterials (n=13) and selenium nanomaterials (n=2). They inhibited bacteria growth and/or promoted remineralization. They could be incorporated in topical agents (29/75, 39%), dental adhesives (11/75, 15%), restorative fillers (4/75, 5%), dental sealant (3/75, 4%), oral drugs (3/75, 4%), toothpastes (2/75, 3%) and functional candies (1/75, 1%). Other publications (22/75, 29%) do not mention specific applications. However, most publications (67/75, 89%) were in vitro studies. Six publications (6/75, 8%) were animal studies, and only two publications (2/75, 3%) were clinical studies. CONCLUSION The literature showed non-metallic nanomaterials have antibacterial and/or remineralising properties. The most common type of non-metallic nanomaterials for caries management is organic nanomaterials. Non-metallic nanomaterials can be incorporated into dental sealants, toothpaste, dental adhesives, topical agents and even candies and drugs. However, the majority of the publications are in vitro studies, and only two publications are clinical studies.
Collapse
Affiliation(s)
- Veena Wenqing Xu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | | | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Christie Ying Kei Lung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| |
Collapse
|
11
|
Growing Global Research Interest in Antimicrobial Peptides for Caries Management: A Bibliometric Analysis. J Funct Biomater 2022; 13:jfb13040210. [PMID: 36412851 PMCID: PMC9680375 DOI: 10.3390/jfb13040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022] Open
Abstract
Objective: Researchers are studying the use of antimicrobial peptides as functional biomaterials to prevent and treat dental caries. This study aims to investigate the global research interest in antimicrobial peptides for caries management. Methods: Two independent investigators systematically searched with keywords ('Caries' OR 'Dental caries') AND ('Antimicrobial peptide' OR 'AMP' OR 'Statherin' OR 'Histatin' OR 'Defensin' OR 'Cathelicidin') on Web of Science, PubMed and Scopus. They removed duplicate publications and screened the titles and abstracts to identify relevant publications. The included publications were summarized and classified as laboratory studies, clinical trials or reviews. The citation count and citation density of the three publication types were compared using a one-way analysis of variance. The publications' bibliometric data were analyzed using the Bibliometrix program. Results: This study included 163 publications with 115 laboratory studies (71%), 29 clinical trials (18%) and 19 reviews (11%). The number of publications per year have increased steadily since 2002. The citation densities (mean ± SD) of laboratory study publications (3.67 ± 2.73) and clinical trial publications (2.63 ± 1.85) were less than that of review articles (5.79 ± 1.27) (p = 0.002). The three publication types had no significant difference in citation count (p = 0.54). Most publications (79%, 129/163) reported the development of a novel antimicrobial peptide. China (52/163, 32%) and the US (29/163, 18%) contributed to 50% (81/163) of the publications. Conclusion: This bibliometric analysis identified an increasing trend in global interest in antimicrobial peptides for caries management since 2002. The main research topic was the development of novel antimicrobial peptides. Most publications were laboratory studies, as were the three publications with the highest citation counts. Laboratory studies had high citation counts, whereas reviews had high citation density.
Collapse
|
12
|
Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2022; 128:248-330. [PMID: 36096911 DOI: 10.1016/j.prosdent.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
The Scientific Investigation Committee of the American Academy of Restorative Dentistry offers this review of the 2021 dental literature in restorative dentistry to inform busy dentists regarding noteworthy scientific and clinical progress over the past year. Each member of the committee brings discipline-specific expertise to coverage of this broad topical area. Specific subject areas addressed, in order of the appearance in this report, include COVID-19 and the dental profession (new); prosthodontics; periodontics, alveolar bone, and peri-implant tissues; implant dentistry; dental materials and therapeutics; occlusion and temporomandibular disorders; sleep-related breathing disorders; oral medicine and oral and maxillofacial surgery; and dental caries and cariology. The authors focused their efforts on reporting information likely to influence daily dental treatment decisions with an emphasis on future trends in dentistry. With the tremendous volume of dentistry and related literature being published daily, this review cannot possibly be comprehensive. Rather, its purpose is to update interested readers and provide important resource material for those interested in pursuing greater details on their own. It remains our intent to assist colleagues in negotiating the extensive volume of important information being published annually. It is our hope that readers find this work useful in successfully managing the patients and dental problems they encounter.
Collapse
|
13
|
Li X, Jiang Y, Lin Y. Production of antimicrobial peptide arasin-like Sp in Escherichia coli via an ELP-intein self-cleavage system. J Biotechnol 2022; 347:49-55. [PMID: 35240202 DOI: 10.1016/j.jbiotec.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/30/2021] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Antibiotic resistance is a major public health threat to both humans and animals. There is an urgent need for antimicrobial agents with novel modes of action. Antimicrobial peptides (AMPs) with broad-spectrum antimicrobial activity become the ideal alternative to traditional antibiotics. Here, the ELP-intein self-cleavage system was used to produce antimicrobial peptide arasin-likeSp in Escherichia coli. The tagged target protein (ELP-intein-arasin-likeSp) was mainly expressed in soluble, separated from cell lysates by the inverse transition cycling (ITC), and the arasin-likeSp was further purified by the self-cleavage of intein and the second round of ITC. The final yield of arasin-likeSp was about 3.56 mg/L. Purified arasin-likeSp exhibited significant antibacterial activities against the Gram-positive Bacillus subtilis and Gram-negative Vibrio harveyi bacteria. FE-SEM and PI staining analysis revealed that the arasin-likeSp treatment altered the morphology and membrane permeability of Bacillus subtilis and Vibrio harveyi. Collectively, these data suggest that arasin-likeSp is a candidate AMP for effective inhibition of Vibrio harveyi, a significant bacterial pathogen infecting marine fish and invertebrates. The ELP-intein self-cleavage system described here is a low-cost, simple and potential method for producing antimicrobial peptides, which lays foundations for the large-scale production of antimicrobial peptides in the future.
Collapse
Affiliation(s)
- Xiu Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Yu Jiang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Ying Lin
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
14
|
Niu JY, Yin IX, Wu WKK, Li QL, Mei ML, Chu CH. Efficacy of the dual-action GA-KR12 peptide for remineralising initial enamel caries: an in vitro study. Clin Oral Investig 2021; 26:2441-2451. [PMID: 34635946 DOI: 10.1007/s00784-021-04210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the antibiofilm and remineralising effects of the dual-action peptide GA-KR12 on artificial enamel caries. MATERIALS AND METHODS Enamel blocks with artificial caries were treated with sterilised deionised water as control or GA-KR12. The blocks underwent biochemical cycling with Streptococcus mutans for 3 weeks. The architecture, viability, and growth kinetics of the biofilm were determined, respectively, by scanning electron microscopy (SEM), confocal laser scanning microscopy, and quantitative (culture colony-forming units, CFUs). The mineral loss, calcium-to-phosphorus ratio, surface morphology, and crystal characteristics of the enamel surface were determined, respectively, using micro-computed tomography, energy dispersive spectroscopy, SEM, and X-ray diffraction (XRD). RESULTS SEM showed confluent growth of S. mutans in the control group but not in the GA-KR12-treated group. The dead-to-live ratios of the control and GA-KR12-treated groups were 0.42 ± 0.05 and 0.81 ± 0.08, respectively (p < 0.001). The log CFUs of the control and GA-KR12-treated groups were 8.15 ± 0.32 and 6.70 ± 0.49, respectively (p < 0.001). The mineral losses of the control and GA-KR12-treated groups were 1.39 ± 0.09 gcm-3 and 1.19 ± 0.05 gcm-3, respectively (p < 0.001). The calcium-to-phosphorus molar ratios of the control and GA-KR12-treated groups were 1.47 ± 0.03 and 1.57 ± 0.02, respectively (p < 0.001). A uniformly remineralised prismatic pattern on enamel blocks was observed in the GA-KR12-treated but not in the control group. The hydroxyapatite in the GA-KR12-treated group was better crystallised than that in the control group. CONCLUSION The dual-action peptide GA-KR12 inhibited the growth of S. mutans biofilm and promoted the remineralisation of enamel caries. CLINICAL RELEVANCE GA-KR12 potentially is applicable for managing enamel caries.
Collapse
Affiliation(s)
- John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,Department of Oral Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Quan-Li Li
- School of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China. .,Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Niu JY, Yin IX, Wu WKK, Li QL, Mei ML, Chu CH. Remineralising dentine caries using an artificial antimicrobial peptide: An in vitro study. J Dent 2021; 111:103736. [PMID: 34175452 DOI: 10.1016/j.jdent.2021.103736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To investigate the antibacterial and remineralising effects of a novel dual-action antimicrobial peptide, GA-KR12, on artificial dentine caries. METHODS Human dentine blocks with artificial carious lesions were allocated to two groups - Group 1: dentine blocks treated with the novel antimicrobial peptide GA-KR12 twice daily; Group 2: dentine blocks received water as the negative control. Two groups underwent Streptococcus mutan biofilm-remineralisation cycles at 37 °C for 7 days. The morphology, viability and growth kinetics of the S. mutans biofilm were evaluated by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and colony-forming unit (CFU) counting, respectively. The dentine blocks' lesion depths and mineral loss, changes in chemical structure, dentine surface morphology and crystal characteristics were determined using micro-computed tomography, Fourier transform infrared (FTIR), SEM and X-ray diffraction (XRD), respectively. RESULTS The surface of the dentine blocks in Group 1 was partially covered by S. mutans with damaged cell structure. Group 2 showed affluent growth of S. mutans covering the dentine surface when compared to Group 1. The dead-to-live ratio of Group 1 and Group 2 were 0.78 ± 0.01 and 0.47 ± 0.08, respectively (p < 0.001). The Log CFUs of Group 1 and Group 2 were 7.14 ± 0.30 and 8.24 ± 0.20, respectively (p < 0.001). The lesion depths of Group 1 and Group 2 were 109 ± 1 µm and 135 ± 3 µm, respectively (p < 0.001). The mineral loss of Group 1 and Group 2 were 0.59 ± 0.08 gHApcm-3 and 0.81 ± 0.07 gHApcm-3, respectively (p < 0.001). FTIR showed the amide I-to-hydrogen phosphate (HPO42-) ratios of Group 1 and Group 2 were 0.25 ± 0.05 and 0.39 ± 0.05 (p < 0.001), respectively. SEM images showed Group 1 had less exposed dentine collagen fibres than Group 2. The XRD revealed that the hydroxyapatite in Group 1 was well crystalised. CONCLUSION This study demonstrated that the novel antimicrobial peptide GA-KR12 inhibited the growth of S. mutans biofilm and enhanced the remineralisation of artificial dentine caries.
Collapse
Affiliation(s)
- John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; Department of Oral Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Quan-Li Li
- School of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|