1
|
Lim YL, Bohelay G, Hanakawa S, Musette P, Janela B. Autoimmune Pemphigus: Latest Advances and Emerging Therapies. Front Mol Biosci 2022; 8:808536. [PMID: 35187073 PMCID: PMC8855930 DOI: 10.3389/fmolb.2021.808536] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Pemphigus represents a group of rare and severe autoimmune intra-epidermal blistering diseases affecting the skin and mucous membranes. These painful and debilitating diseases are driven by the production of autoantibodies that are mainly directed against the desmosomal adhesion proteins, desmoglein 3 (Dsg3) and desmoglein 1 (Dsg1). The search to define underlying triggers for anti-Dsg-antibody production has revealed genetic, environmental, and possible vaccine-driven factors, but our knowledge of the processes underlying disease initiation and pathology remains incomplete. Recent studies point to an important role of T cells in supporting auto-antibody production; yet the involvement of the myeloid compartment remains unexplored. Clinical management of pemphigus is beginning to move away from broad-spectrum immunosuppression and towards B-cell-targeted therapies, which reduce many patients’ symptoms but can have significant side effects. Here, we review the latest developments in our understanding of the predisposing factors/conditions of pemphigus, the underlying pathogenic mechanisms, and new and emerging therapies to treat these devastating diseases.
Collapse
Affiliation(s)
- Yen Loo Lim
- Department of Dermatology, National Skin Centre, Singapore
| | - Gerome Bohelay
- Department of Dermatology and INSERM U1125, Avicenne Hospital, Bobigny, France
| | - Sho Hanakawa
- A*STAR Skin Research Labs (ASRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Philippe Musette
- Department of Dermatology and INSERM U1125, Avicenne Hospital, Bobigny, France
| | - Baptiste Janela
- A*STAR Skin Research Labs (ASRL), Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
- Singapore Immunology network, Agency for Science, Technology and Research (A*STAR), Singapore
- *Correspondence: Baptiste Janela,
| |
Collapse
|
2
|
Scarsella L, Pollmann R, Amber KT. Autoreactive T cells in pemphigus: perpetrator and target. Ital J Dermatol Venerol 2020; 156:124-133. [PMID: 33179878 DOI: 10.23736/s2784-8671.20.06706-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pemphigus vulgaris (PV) is an autoimmune blistering disease, in which autoantibodies against epidermal cadherins, such as desmoglein (Dsg)1 and Dsg3, lead to the development of blisters and erosions on the skin and mucous membranes. Autoreactive CD4+ T cells are essential for the induction and perpetuation of the disease by interaction with B cells producing autoantibodies. PV has a strong genetic association with certain human leucocyte antigen (HLA) alleles with HLA-DRB1*04:02 and LA-DQB1*05:03 being the most prevalent in patients. Recently, genome-wide association studies have provided a new approach to identify single nucleotide polymorphisms, alongside the known association with HLA alleles. Loss of tolerance against Dsgs and other autoantigens is a critical event in the pathogenesis of PV. Epitope spreading contributes to the progression of PV, leading to an extension of the Dsg-specific autoimmune response to other molecular epitopes of autoantigens, such as desmocollins or muscarinic receptors. Alterations in CD4+CD25+ FoxP3+ regulatory T cells are thought to contribute to the development of PV representing a suitable target for therapeutic interventions. Several CD4+ T-cell subsets and cytokines are involved in the pathogenesis of PV, while Th2 cells are the extensively studied population. Recently, other T cell subsets like T follicular helper cells and Th17 have gained attention as new potential players in PV pathogenesis. The involvement of local autoantibody production in the lesional skin of PV patients in tertiary lymphoid organs is currently discussed but not yet clarified. In this study, we reviewed the current knowledge about the development, characteristics and function of autoreactive T cells in pemphigus and present current new T cell-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Luca Scarsella
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Robert Pollmann
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany -
| | - Kyle T Amber
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| |
Collapse
|
3
|
Petzl-Erler ML. Beyond the HLA polymorphism: A complex pattern of genetic susceptibility to pemphigus. Genet Mol Biol 2020; 43:e20190369. [PMID: 32639508 PMCID: PMC7341728 DOI: 10.1590/1678-4685-gmb-2019-0369] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Pemphigus is a group of autoimmune bullous skin diseases that result in
significant morbidity. As for other multifactorial autoimmune disorders,
environmental factors may trigger the disease in genetically susceptible
individuals. The goals of this review are to summarize the state of knowledge
about the genetic variation that may affect the susceptibility and pathogenesis
of pemphigus vulgaris and pemphigus foliaceus – both the endemic and the
sporadic forms –, to compare and discuss the possible meaning of the
associations reported, and to propose recommendations for new research
initiatives. Understanding how genetic variants translate into pathogenic
mechanisms and phenotypes remains a mystery for most of the polymorphisms that
contribute to disease susceptibility. However, genetic studies provide a strong
foundation for further developments in this field by generating testable
hypotheses. Currently, results still have limited influence on disease
prevention and prognosis, drug development, and clinical practice, although the
perspectives for future applications for the benefit of patients are
encouraging. Recommendations for the continued advancement of our understanding
as to the impact of genetic variation on pemphigus include these partially
overlapping goals: (1) Querying the functional effect of genetic variants on the
regulation of gene expression through their impact on the nucleotide sequence of
cis regulatory DNA elements such as promoters and enhancers, the splicing of
RNA, the structure of regulatory RNAs and proteins, binding of these regulatory
molecules to regulatory DNA elements, and alteration of epigenetic marks; (2)
identifying key cell types and cell states that are implicated in pemphigus
pathogenesis and explore their functional genomes; (3) integrating structural
and functional genomics data; (4) performing disease-progression longitudinal
studies to disclose the causal relationships between genetic and epigenetic
variation and intermediate disease phenotypes; (5) understanding the influence
of genetic and epigenetic variation in the response to treatment and the
severity of the disease; (6) exploring gene-gene and genotype-environment
interactions; (7) developing improved pemphigus-prone and non-prone animal
models that are appropriate for research about the mechanisms that link
genotypes to pemphigus. Achieving these goals will demand larger samples of
patients and controls and multisite collaborations.
Collapse
Affiliation(s)
- Maria Luiza Petzl-Erler
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
4
|
Vodo D, Sarig O, Sprecher E. The Genetics of Pemphigus Vulgaris. Front Med (Lausanne) 2018; 5:226. [PMID: 30155467 PMCID: PMC6102399 DOI: 10.3389/fmed.2018.00226] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
Pemphigus vulgaris (PV) is a severe autoimmune blistering disease caused by auto-antibodies (auto-Abs) directed against epithelial desmosomal components and leading to disruption of cell-cell adhesion. The exact mechanisms underlying the disease pathogenesis remain unknown and treatment is still based on immunosuppressive drugs, such as corticosteroids, which are associated with potentially significant side effects. Ethnic susceptibility, familial occurrence, and autoimmune comorbidity, suggest a genetic component to the pathogenesis of the disease, which, if discovered, could advance our understanding of PV pathogenesis and thereby point to novel therapeutic targets for this life-threatening disorder. In this article, we review the evidence for a genetic basis of PV, summarize the different approaches used to investigate susceptibility traits for the disease and describe past and recent discoveries regarding genes associated with PV, most of which belong to the human leukocyte antigen (HLA) locus with limited data regarding association of non-HLA genes with the disease.
Collapse
Affiliation(s)
- Dan Vodo
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Sarig
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Amber KT, Staropoli P, Shiman MI, Elgart GW, Hertl M. Autoreactive T cells in the immune pathogenesis of pemphigus vulgaris. Exp Dermatol 2013; 22:699-704. [DOI: 10.1111/exd.12229] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Kyle T. Amber
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| | - Patrick Staropoli
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| | - Michael I. Shiman
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| | - George W. Elgart
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| | - Michael Hertl
- Department of Dermatology and Allergology; Philipps-Universität; Marburg Germany
| |
Collapse
|
6
|
Polymorphisms of HLA microsatellite marker in Tunisian pemphigus foliaceus. Hum Immunol 2013; 74:104-9. [DOI: 10.1016/j.humimm.2012.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/18/2012] [Accepted: 10/03/2012] [Indexed: 12/25/2022]
|
7
|
Abstract
Pemphigus vulgaris (PV) is an autoimmune blistering disorder with a complex etiology involving an interplay of genetic as well as environmental factors, most of which remain unknown. Despite the identification of several human leukocyte antigen (HLA) alleles as risk factors for disease, no other non-HLA genes have clearly been implicated in disease susceptibility. Newer candidate gene and whole-genome approaches are needed to illuminate the full palate of genetic risk elements in PV. Based on this information, genetic-based tools can be expected to provide a scientific rationale for future clinical decision-making by physicians and facilitate an era of personalized medicine.
Collapse
Affiliation(s)
- Animesh A Sinha
- Department of Dermatology, State University of New York at Buffalo and Roswell Park Cancer Institute, MRC 234, Buffalo, NY 14263, USA.
| |
Collapse
|
8
|
Tron F, Gilbert D, Mouquet H, Joly P, Drouot L, Makni S, Masmoudi H, Charron D, Zitouni M, Loiseau P, Ben Ayed M. Genetic factors in pemphigus. J Autoimmun 2005; 24:319-28. [PMID: 15869862 DOI: 10.1016/j.jaut.2005.03.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/23/2005] [Accepted: 03/15/2005] [Indexed: 12/20/2022]
Abstract
Epidemiological studies performed in different ethnic populations and family studies, notably based on a partial phenotype of the autoimmune process, indicate that genetic factors are involved in the occurrence of pemphigus. However, the precise heritability remains uncertain in the absence of twin concordance rate studies. Among the different strategies available to identify genetic factors participating in autoimmune disease susceptibility, only population studies based on case-control design have been performed in pemphigus. These studies consistently showed that MHC locus, in particular HLA class II alleles, are associated with pemphigus vulgaris and pemphigus foliaceus. Other genes of the MHC locus may also participate in disease susceptibility as shown by studies using microsatellite markers across different regions of the MHC. It is likely that other non-MHC genes are involved in the pathogenesis of pemphigus. In particular, involvement of a polymorphic variant of desmoglein 1 gene was shown to be associated with pemphigus foliaceus and to interact in an epistatic manner with MHC class II genes to contribute to the autoimmune process. Other candidate genes to which a role can be assigned in the disease pathogenesis should be considered to design case-control or family-based association studies. Genome scan studies which require a large number of multiplex families to reach statistical power, should also be considered in the endemic form of pemphigus foliaceus because of the high number of familial cases.
Collapse
Affiliation(s)
- François Tron
- Unité INSERM 519 - IFRMP 23, Hôpital Charles Nicolle, Faculté Mixte de Médecine et de Pharmacie, 22, Boulevard Gambetta, 76183 Rouen Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|